56 research outputs found

    Combination of photodynamic therapy and oral antifungals for the treatment of onychomycosis

    Get PDF
    Onychomycosis accounts for 50% of nail disorders, making it one of the most prevalent fungal diseases and a therapeutic challenge. Photodynamic therapy (PDT) could constitute a therapeutic alternative, owing to its good adherence, the low probability of resistance, the lack of interaction with antimicrobials, and its favorable adverse effect profile. This retrospective observational study included all patients with a microbiological diagnosis of onychomycosis treated with PDT at Miguel Servet University Hospital, Zaragoza (Spain), between January 2013 and June 2021. The protocol con-sisted of pre-treatment with 40% urea for 7 days, followed by 16% methyl-aminolevulinate (MAL) for 3 h and subsequent irradiation with a red-light LED lamp (37 J/cm2), every 1 or 2 weeks. Combined treatment with oral and/or topical antifungals was recorded. Of the 20 patients included (mean age, 59 ± 17 years), 55% were men. The most frequently detected microorganism was Trichophyton rubrum (55%). The most commonly affected location was the feet (90%): 50% of these cases were associated with tinea pedis. The median (standard deviation) number of PDT sessions was 6 (2.8). PDT was combined with systemic terbinafine (250 mg/day) in 10 cases (in 8 cases, this was administered for only 1 month), and with topical terbinafine in 3 cases. A complete clinical response was achieved in 80% (16) of cases and microbiological cure in 60% (12). PDT is a therapeutic alternative for ony-chomycosis, and can be administered either in monotherapy or combined with antifungals, allowing for a reduction in the duration and possible adverse effects of antifungal treatment and achieving higher cure rates than those obtained with either treatment alone

    Comparison of Antibacterial Activity and Wound Healing in a Superficial Abrasion Mouse Model of Staphylococcus aureus Skin Infection Using Photodynamic Therapy Based on Methylene Blue or Mupirocin or Both

    Get PDF
    Background: Antibiotic resistance and impaired wound healing are major concerns in S. aureus superficial skin infections, and new therapies are needed. Antimicrobial photodynamic therapy (aPDT) is a new therapeutic approach for infections, but it also improves healing in many wound models. Objective: To compare the antimicrobial activity and the effects on wound healing of aPDT based on Methylene Blue (MB-aPDT) with mupirocin treatment, either alone or in combination, in superficial skin wounds of S. aureus-infected mice. Additionally, to evaluate the clinical, microbiological, and cosmetic effects on wound healing. Materials and Methods: A superficial skin infection model of S. aureus was established in SKH-1 mice. Infected wounds were treated with MB-aPDT, MB-aPDT with a daily topical mupirocin or only with mupirocin. No treatment was carried out in control animals. Daily clinical and microbiological examinations were performed until complete clinical wound healing. Histopathological studies and statistical analysis were performed at the end of the study. Results: MB-aPDT treatment induced the best wound healing compared to mupirocin alone or to mupirocin plus MB-aPDT. Superficial contraction at 24 h and a greater reduction in size at 48 h, quicker detachment of the crust, less scaling, and absence of scars were observed. Histopathological studies correlated with clinical and gross findings. By contrast, mupirocin showed the highest logaritmic reduction of S. aureus. Conclusions: MB-aPDT and mupirocin treatments are effective in a murine superficial skin infection model of S. aureus. One session of MB-aPDT was the best option for clinical wound healing and cosmetic results. The addition of mupirocin to MB-aPDT treatment improved antimicrobial activity; however, it did not enhance wound healing. No synergistic antibacterial effects were detected. © Copyright © 2021 Pérez, Robres, Moreno, Bolea, Verde, Pérez-Laguna, Aspiroz, Gilaberte and Rezusta

    Mechanisms of linezolid resistance among enterococci of clinical origin in Spain—detection of optrA-and cfr(D)-carrying E. faecalis

    Get PDF
    The mechanisms of linezolid resistance among 13 E. faecalis and 6 E. faecium isolates, recovered from six Spanish hospitals during 2017–2018, were investigated. The presence of acquired linezolid resistance genes and mutations in 23S rDNA and in genes encoding for ribosomal proteins was analyzed by PCR and amplicon sequencing. Moreover, the susceptibility to 18 antimicrobial agents was investigated, and the respective molecular background was elucidated by PCR-amplicon sequencing and whole genome sequencing. The transferability of the linezolid resistance genes was evaluated by filter-mating experiments. The optrA gene was detected in all 13 E. faecalis isolates; and one optrA-positive isolate also carried the recently described cfr(D) gene. Moreover, one E. faecalis isolate displayed the nucleotide mutation G2576T in the 23S rDNA. This mutation was also present in all six E. faecium isolates. All linezolid-resistant enterococci showed a multiresistance phenotype and harbored several antimicrobial resistance genes, as well as many virulence determinants. The fexA gene was located upstream of the optrA gene in 12 of the E. faecalis isolates. Moreover, an erm(A)-like gene was located downstream of optrA in two isolates recovered from the same hospital. The optrA gene was transferable in all but one E. faecalis isolates, in all cases along with the fexA gene. The cfr(D) gene was not transferable. The presence of optrA and mutations in the 23S rDNA are the main mechanisms of linezolid resistance among E. faecalis and E. faecium, respectively. We report the first description of the cfr(D) gene in E. faecalis. The presence of the optrA and cfr(D) genes in Spanish hospitals is a public health concern

    Penicillin susceptibility among invasive MSSA infections: a multicentre study in 16 Spanish hospitals

    Get PDF
    Objectives: To determine the prevalence of penicillin susceptibility among MSSA causing bloodstream infections (BSIs) in 16 Spanish hospitals and to characterize the penicillin-susceptible MSSA (MSSA-PENS) isolates. Methods: A total of 1011 Staphylococcus aureus isolates were collected from blood cultures in 16 Spanish hospitals during 2018–19 (6–12 months) and their susceptibility to 18 antimicrobials was determined. The MSSA-PENS isolates were selected and examined by PCR to determine the presence of the blaZ gene, other resistance genes and the genes lukF/lukS-PV, eta, etb and tst. The immune evasion cluster (IEC) type was also analysed. All the MSSA-PENS isolates were submitted to S. aureus protein A (spa) typing and the clonal complexes (CCs) were assigned according to their spa type. Results: The prevalence of MSSA was 74.6% (754/1011) and 14.9% (151/1011) were MSSA-PENS-blaZnegative. MSSA-PENS-blaZnegative isolates (n = 151) were ascribed to 88 spa types and 11 CCs. The most frequent CCs were CC5 (35/151) and CC398 (25/151), with t002-CC5 and t571-CC398 being the most common lineages. Pan-susceptibility was identified in 117 of the 151 MSSA-PENS-blaZnegative isolates (77.5%). In the remaining isolates, erythromycin and clindamycin resistance was the most frequent resistance found, although tobramycin, ciprofloxacin, fusidic acid, mupirocin and/or tetracycline resistance was also detected. Thirty-eight MSSA-PENS-blaZnegative isolates were IEC negative and four isolates were Panton–Valentine leucocidin (‘PVL’) positive. Conclusions: A high penicillin susceptibility rate was detected among MSSA, opening therapeutic opportunities for BSIs. The emergence of new successful MSSA-PENS clones could be responsible for these data. The detection among MSSA-PENS-blaZnegative isolates of the clonal lineage CC398 or the absence of an IEC raises questions about their possible animal origin, requiring further analysis

    Study of the distribution of Malassezia species in patients with pityriasis versicolor and healthy individuals in Tehran, Iran

    Get PDF
    BACKGROUND: Pityriasis versicolor is a superficial infection of the stratum corneum which caused by a group of yeasts formerly named pityrosporium. The taxonomy of these lipophilic yeasts has recently been modified and includes seven species referred as Malassezia. The aim of this study is to compare the distribution of Malassezia species isolated from pityriasis versicolor lesions and those isolated from healthy skins. METHODS: Differentiation of all malassezia species performed using morphological features and physiological test including catalase reaction, Tween assimilation test and splitting of esculin. RESULTS: In pityriasis versicolor lesions, the most frequently isolated species was M. globosa (53.3%), followed by M. furfur (25.3%), M. sympodialis(9.3%), M. obtusa (8.1%) and M. slooffiae (4.0%). The most frequently isolated species in the skin of healthy individuals were M. globosa, M. sympodialis, M. furfur, M. sloofiae and M. restricta which respectively made up 41.7%, 25.0%, 23.3%, 6.7% and 3.3% of the isolated species. CONCLUSIONS: According to our data, M. globosa was the most prevalent species in the skin of healthy individuals which recovered only in the yeast form. However, the Mycelial form of M. globosa was isolated as the dominant species from pityriasis versicolor lesions. Therefore, the role of predisposing factors in the conversion of this yeast to mycelium and its subsequent involvement in pityriasis versicolor pathogenicity should be considered

    Prevalence and genetic characteristics of Staphylococcus aureus CC398 isolates from invasive infections in spanish hospitals, focusing on the livestock-independent CC398-MSSA clade

    Get PDF
    Background: Livestock-associated (LA)-CC398-MRSA is closely related to pigs, being unfrequently detected in human invasive infections. CC398-MSSA is emerging in human invasive infections in some countries, but genetic and epidemiological characteristics are still scarcely reported. Objectives: To determine the prevalence of Staphylococcus aureus (SA) CC398, both MRSA and MSSA, among blood cultures SA isolates recovered in Spanish hospitals located in regions with different pig-farming densities (PD) and characterize the recovered isolates. Methods: One thousand twenty-two SA isolates (761 MSSA, 261 MRSA) recovered from blood cultures during 6–12 months in 17 Spanish hospitals (2018–2019) were studied. CC398 lineage identification, detection of spa-types, and antibiotic resistance, virulence and human immune evasion cluster (IEC) genes were analyzed by PCR/sequencing. Results: Forty-four CC398-MSSA isolates (4.3% of SA; 5.8% of MSSA) and 10 CC398-MRSA isolates (1% of SA; 3.8% of MRSA) were detected. Eleven spa-types were found among the CC398-MSSA isolates with t571 and t1451 the most frequent spa-types detected (75%). Most of CC398-MSSA isolates were Immune-Evasion-Cluster (IEC)-positive (88.6%), tetracycline-susceptible (95.5%) and erythromycin/clindamycin–inducible-resistant/erm(T)-positive (75%). No statistical significance was detected when the CC398-MSSA/MSSA rate was correlated to PD (pigs/km2) (p = 0.108). On the contrary, CC398-MRSA isolates were all IEC-negative, predominately spa-t011 (70%), and the CC398-MRSA/MRSA rate was significantly associated to PD (p < 0.005). Conclusion: CC398-MSSA is an emerging clade in invasive infections in Spanish hospitals. CC398-MRSA (mostly t011) and CC398-MSSA (mostly t571 and t1451) show important differences, possibly suggesting divergent steps in host-adaptation evolutionary processes. While CC398-MRSA is livestock-associated (lacking IEC-system), CC398-MSSA seems to be mostly livestock-independent, carrying human-adaptation markers.

    A Field Guide to Pandemic, Epidemic and Sporadic Clones of Methicillin-Resistant Staphylococcus aureus

    Get PDF
    In recent years, methicillin-resistant Staphylococcus aureus (MRSA) have become a truly global challenge. In addition to the long-known healthcare-associated clones, novel strains have also emerged outside of the hospital settings, in the community as well as in livestock. The emergence and spread of virulent clones expressing Panton-Valentine leukocidin (PVL) is an additional cause for concern. In order to provide an overview of pandemic, epidemic and sporadic strains, more than 3,000 clinical and veterinary isolates of MRSA mainly from Germany, the United Kingdom, Ireland, France, Malta, Abu Dhabi, Hong Kong, Australia, Trinidad & Tobago as well as some reference strains from the United States have been genotyped by DNA microarray analysis. This technique allowed the assignment of the MRSA isolates to 34 distinct lineages which can be clearly defined based on non-mobile genes. The results were in accordance with data from multilocus sequence typing. More than 100 different strains were distinguished based on affiliation to these lineages, SCCmec type and the presence or absence of PVL. These strains are described here mainly with regard to clinically relevant antimicrobial resistance- and virulence-associated markers, but also in relation to epidemiology and geographic distribution. The findings of the study show a high level of biodiversity among MRSA, especially among strains harbouring SCCmec IV and V elements. The data also indicate a high rate of genetic recombination in MRSA involving SCC elements, bacteriophages or other mobile genetic elements and large-scale chromosomal replacements

    A Field Guide to Pandemic, Epidemic and Sporadic Clones of Methicillin-Resistant Staphylococcus aureus

    Get PDF
    In recent years, methicillin-resistant Staphylococcus aureus (MRSA) have become a truly global challenge. In addition to the long-known healthcare-associated clones, novel strains have also emerged outside of the hospital settings, in the community as well as in livestock. The emergence and spread of virulent clones expressing Panton-Valentine leukocidin (PVL) is an additional cause for concern. In order to provide an overview of pandemic, epidemic and sporadic strains, more than 3,000 clinical and veterinary isolates of MRSA mainly from Germany, the United Kingdom, Ireland, France, Malta, Abu Dhabi, Hong Kong, Australia, Trinidad & Tobago as well as some reference strains from the United States have been genotyped by DNA microarray analysis. This technique allowed the assignment of the MRSA isolates to 34 distinct lineages which can be clearly defined based on non-mobile genes. The results were in accordance with data from multilocus sequence typing. More than 100 different strains were distinguished based on affiliation to these lineages, SCCmec type and the presence or absence of PVL. These strains are described here mainly with regard to clinically relevant antimicrobial resistance- and virulence-associated markers, but also in relation to epidemiology and geographic distribution. The findings of the study show a high level of biodiversity among MRSA, especially among strains harbouring SCCmec IV and V elements. The data also indicate a high rate of genetic recombination in MRSA involving SCC elements, bacteriophages or other mobile genetic elements and large-scale chromosomal replacements

    Dermatite seborreica

    Full text link
    • …
    corecore