48 research outputs found

    Inward and outward currents of native and cloned K(ATP) channels (Kir6.2/SUR1) share single-channel kinetic properties

    Get PDF
    BACKGROUND: The ATP-sensitive K(+) (K(ATP)) channel is found in a variety of tissues extending from the heart and vascular smooth muscles to the endocrine pancreas and brain. Common to all K(ATP) channels is the pore-forming subunit Kir6.x, a member of the family of small inwardly rectifying K(+) channels, and the regulatory subunit sulfonylurea receptor (SURx). In insulin secreting ÎČ-cells in the endocrine part of the pancreas, where the channel is best studied, the K(ATP) channel consists of Kir6.2 and SUR1. Under physiological conditions, the K(ATP) channel current flow is outward at membrane potentials more positive than the K(+) equilibrium potential around −80 mV. However, K(ATP) channel kinetics have been extensively investigated for inward currents and the single-channel kinetic model is based on this type of recording, whereas only a limited amount of work has focused on outward current kinetics. METHODS: We have estimated the kinetic properties of both native and cloned K(ATP) channels under varying ionic gradients and membrane potentials using the patch-clamp technique. RESULTS: Analyses of outward currents in K(ATP) and cloned Kir6.2ΔC26 channels, alone or co-expressed with SUR1, show openings that are not grouped in bursts as seen for inward currents. Burst duration for inward current corresponds well to open time for outward current. CONCLUSIONS: Outward K(ATP) channel currents are not grouped in bursts regardless of membrane potential, and channel open time for outward currents corresponds to burst duration for inward currents

    Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19

    Get PDF
    IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19. Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19. DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non–critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022). INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days. MAIN OUTCOMES AND MEASURES The primary outcome was organ support–free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes. RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support–free days among critically ill patients was 10 (–1 to 16) in the ACE inhibitor group (n = 231), 8 (–1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support–free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively). CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570

    Stabilized Porous Phospholipid Nanoshells

    No full text

    Quantification of intracellular HNO delivery with capillary zone electrophoresis

    No full text
    Redox signaling, wherein reactive and diffusible small molecules are channeled into specific messenger functions, is a critical component of signal transduction. A central principle of redox signaling is that the redox modulators are produced in a highly controlled fashion to specifically modify biotargets. Thiols serve as primary mediators of redox signaling as a function of the rich variety of adducts, which allows initiation of distinct cellular effects. Coupling the inherent reactivity of thiols with highly sensitive and selective chemical analysis protocols can facilitate identification of redox signaling agents, both in solution and in cultured cells. Here, we describe use of capillary zone electrophoresis to both identify and quantify sulfinamides, which are specific markers of the reaction of thiols with nitroxyl (HNO), a putative biologically relevant reactive nitrogen species.National Science Foundation12 month embargo; available online 27 October 2021This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]

    Photolithographic Fabrication of Microapertures with Well-Defined, Three-Dimensional Geometries for Suspended Lipid Membrane Studies

    No full text
    Robust and high-density biosensors incorporating suspended lipid membranes require microfabricated apertures that can be readily integrated into complex analysis systems. Apertures with well-defined, three-dimensional geometries enable the formation of suspended lipid membranes and facilitate reduced aperture size compared to vertical-walled apertures. Unfortunately, existing methods of producing apertures with well-defined, three-dimensional geometries are based on complex and expensive fabrication procedures, some of which yield apertures in excessively fragile thin-film materials. Here, we describe a microfabrication method utilizing incline and rotate lithography that achieves sloped-wall microapertures in SU-8 polymer substrates with precision control of the aperture diameter, substrate thickness, and wall angle. This approach is simple, is of low cost, and is readily scaled up to allow highly reproducible parallel fabrication. The effect of the incident angle of UV exposure and the size of photomask features on the aperture geometry were investigated, yielding aperture diameters as small as 7 ÎŒm and aperture wall angles ranging from 8° to 36° measured from the normal axis. Black lipid membranes were suspended across the apertures and showed normalized conductance values of 0.02–0.05 pS ÎŒm<sup>–2</sup> and breakdown voltages of 400–600 mV. The functionality of the resulting sloped-wall microapertures was validated via measurement of reconstituted α-hemolysin activity and the voltage-gated channel activity of alamethicin
    corecore