177 research outputs found

    Catastrophic disruptions revisited

    Get PDF
    We use a smooth particle hydrodynamics method (SPH) to simulate colliding rocky and icy bodies from cm-scale to hundreds of km in diameter, in an effort to define self-consistently the threshold for catastrophic disruption. Unlike previous efforts, this analysis incorporates the combined effects of material strength (using a brittle fragmentation model) and self-gravitation, thereby providing results in the ``strength regime'' and the ``gravity regime'', and in between. In each case, the structural properties of the largest remnant are examined.Comment: To appear in Icaru

    Impact processes in the Solar System: New understandings through numerical modeling

    Get PDF
    A collision of two rocky objects circling the sun in space, each roughly the size and mass of a large mountain range, was modeled. A fragmentation hydrocode was developed to perform dynamical computations of collisional outcomes. Explosive framentation and fluid dynamics were used and drawn together into a single application. To model a solid, certain material parameters, such as density, elasticity, rigidity, and energies of melting and vaporization were input. These parameters are well-known for a variety of important materials, such as ice, iron, granite, and basalt. Another important parameter used is the distribution of initial flaws within the material

    Shoemaker-Levy 9 and the tidal disruption of comets

    Get PDF
    The break-up of Periodic Comet Shoemaker-Levy 9 into multiple pieces following its grazing encounter with Jupiter in July 1992 can be used to study tidally-induced fracture in comets. This spectacular event allows us not only to set limits on the size, strength and density of Shoemaker-Levy 9 itself, but provides invaluable guidance to numerical modeling of such encounters. In an extensive treatment of tidal breakup which assumed self-gravitating, homogeneous, perfectly elastic bodies, Dobrovolskis derived simple analytical expressions for the tidally-induced surface and central stresses. Both can be cast in such a way that Poisson's ratio is the only material dependent constant entering these expressions. Whether both surface and central failure must be initiated as a criterion for breakup, or either one of them is sufficient, remains a subject of disagreement. To resolve this debate, we model the details of cometary breakup using a three-dimensional Smooth Particle Hydrodynamics (SPH) code modified to simulate fracture in small solid objects. At lower stresses associated with brittle failure, we use a rate-dependent strength based on the nucleation of incipient flaws whose number density is given by a Weibull distribution

    The surface and interior of Phobos

    Get PDF
    The impact crater Stickney dominates one hemisphere of the Martian moon Phobos; its diameter (11 km) is about half the size of the body (19 x 22 x 27 km). Besides demarking a threshold between cratering and catastrophic disruption, this impact reveals a great deal about the target's interior. Because Phobos has an unusually low density yet exhibits no direct evidence for volatiles such as water ice, it has been supposed that it sequesters volatiles in the deep interior, or that it is made of some exotic substance, or that it is a loosely-aggregated rubble pile. The network of fracture grooves created by the Stickney impact constrain which, if any, of these models accord with observation

    Some Results of the Educational Experiment APIS (Cervantes Mission on Board ISS)

    Get PDF
    Some results of the analysis of the pictures taken along the performance of the Análisis de Propiedades Inerciales de Sólidos, Analysis of the Inertia Properties of Solid Bodies (APIS) experiment carried out in the Cervantes mission on board ISS, are presented. APIS was an educational experiment devoted to take advantage of the unique conditions of absence of relative gravity forces of a space platform such as ISS, to show some of the characteristics of the free rotational motion of a solid body, which are impossible to carry out on earth. This field of experimental research has application to aerospace engineering science (e.g. attitude control of spacecrafts), to astrophysical sciences (e.g. state of rotation and tumbling motions of asteroids) and to engineering education. To avoid the effect of the ambient atmosphere loads on the motion, the test body is placed inside a sphere, which reduces the effect of the aerodynamic forces to just friction. The drastic reduction of the effect of the surrounding air during the short duration of the experimental sequences allows us to compare the actual motion with the known solutions for the solid body rotation in vacuum. In this paper, some selected, relevant sequences of the sphere enclosing a body with a nominal cylindrical inertia tensor, put into rotation by the astronaut, are shown; the main problems to extract the information concerning the characteristic parameters of the motion are outlined, and some of the results obtained concerning the motion of the test probe are included, which show what seems to be a curious and unexpected solution of the Euler equations for the solid body rotation in vacuum, without energy dissipation, when the angular momentum is almost perpendicular to the axisymmetry axis

    Crater Lakes on Mars: Development of Quantitative Thermal and Geomorphic Models

    Get PDF
    Impact craters on Mars have served as catchments for channel-eroding surface fluids, and hundreds of examples of candidate paleolakes are documented [1,2] (see Figure 1). Because these features show similarity to terrestrial shorelines, wave action has been hypothesized as the geomorphic agent responsible for the generation of these features [3]. Recent efforts have examined the potential for shoreline formation by wind-driven waves, in order to turn an important but controversial idea into a quantitative, falsifiable hypothesis. These studies have concluded that significant wave-action shorelines are unlikely to have formed commonly within craters on Mars, barring Earth-like weather for approx.1000 years [4,5,6]

    Distribution and Orientation of Alluvial Fans in Martian Craters

    Get PDF
    We present the results of the complete survey of Martian alluvial fans from 0-30 S, initiated by Moore and Howard. Nineteen impact craters contain alluvial fans. They are regionally grouped into three distinct areas. We present our initial results regarding their distribution and orientation in order to understand what controls their formation. Since alluvial fans are formed by water transport of sediment, these features record wetter episodes of Martian climate. In addition, their enigmatic distribution (in regional groups and in some craters, but not similar adjacent ones) needs to be understood, to see how regional geology, topographic characteristics, and/or climate influence their formation and distribution

    Cloud Formation and Water Transport on Mars after Major Outflow Events

    Get PDF
    The triggering of a robust water cycle on Mars might have been caused by the gigantic flooding events evidenced by outflow channels. We use the Ames Mars General Circulation Model (MGCM) to test this hypothesis, studying how these presumably abrupt eruptions of water might have affected the climate of Mars in the past. We model where the water ultimately went as part of a transient atmospheric water cycle, to answer questions including: (1) Can sudden introductions of large amounts of water on the Martian surface lead to a new equilibrated water cycle? (2) What are the roles of water vapor and water ice clouds to sudden changes in the water cycle on Mars? (3) How are radiative feedbacks involved with this? (4) What is the ultimate fate of the outflow water? (5) Can we tie certain geological features to outflow water redistributed by the atmosphere
    • …
    corecore