8 research outputs found

    Short Peptides Enhance Single Cell Adhesion and Vi- ability on Microarrays

    Get PDF
    Abstract Single cell patterning holds important implications for biology, biochemistry, biotechnology, medicine, and bioinformatics. The challenge for single cell patterning is to produce small islands hosting only single cells and retaining their viability for a prolonged period of time. This study demonstrated a surface engineering approach that uses a covalently-bound short peptide as a mediator to pattern cells with improved single cell adhesion and prolonged cellular viability on gold patterned SiO 2 substrates. The underlying hypothesis is that cell adhesion is regulated by the type, availability and stability of effective cell adhesion peptides, and thus covalently bound short peptides would promote cell spreading and thus, single cell adhesion and viability. The effectiveness of this approach and the underlying mechanism for the increased probability of single cell adhesion and prolonged cell viability by short peptides were studied by comparing cellular behavior of human umbilical cord vein endothelial cells on three model surfaces whose gold electrodes were immobilized with fibronectin, physically adsorbed Arg-Glu-Asp-Val-Tyr, and covalently-bound Lys-Arg-Glu-Asp-Val-Tyr, respectively. The surface chemistry and binding properties were characterized by reflectance Fourier transform infrared spectroscopy. Both short peptides were superior to fibronectin in producing adhesion of only single cells, while the covalently bound peptide also reduced apoptosis and necrosis of adhered cells. Controlling cell spreading by peptide binding domains to regulate apoptosis and viability represents a fundamental mechanism in cell-materials interaction and provides an effective strategy in engineering arrays of single cells

    Short Peptides Enhance Single Cell Adhesion and Viability on Microarrays

    Get PDF
    Single cell patterning holds important implications for biology, biochemistry, biotechnology, medicine, and bioinformatics. The challenge for single cell patterning is to produce small islands hosting only single cells and retaining their viability for a prolonged period of time. This study demonstrated a surface engineering approach that uses a covalently bound short peptide as a mediator to pattern cells with improved single cell adhesion and prolonged cellular viability on gold patterned SiO2 substrates. The underlying hypothesis is that cell adhesion is regulated bythe type, availability, and stability of effective cell adhesion peptides, and thus covalently bound short peptides would promote cell spreading and, thus, single cell adhesion and viability. The effectiveness of this approach and the underlying mechanism for the increased probability of single cell adhesion and prolonged cell viability by short peptides were studied by comparing cellular behavior of human umbilical cord vein endothelial cells on three modelsurfaces whose gold electrodes were immobilized with fibronectin, physically adsorbed Arg-Glu-Asp-Val-Tyr, and covalently bound Lys-Arg-Glu-Asp-Val-Tyr, respectively. The surface chemistry and binding properties were characterized by reflectance Fourier transform infrared spectroscopy. Both short peptides were superior to fibronectin in producing adhesion of only single cells, whereas the covalently bound peptide also reduced apoptosis and necrosisof adhered cells. Controlling cell spreading by peptide binding domains to regulate apoptosis and viability represents a fundamental mechanism in cell-materials interaction and provides an effective strategy in engineering arrays of single cells
    corecore