240 research outputs found
Teriparatide improves early callus formation in distal radial fractures: Analysis of a subgroup of patients within a randomized trial
Background Teriparatide (parathyreoid hormone; PTH 1-34) increases skeletal mass in humans and improves fracture healing in animals. A recent randomized multicenter trial of nonoperated distal radial fractures showed a moderate shortening of the time to restoration of cortical continuity by treatment with 20 μg (low-dose) teriparatide per day, but not with 40 μg (high-dose). As radiographic cortical continuity appears late in the healing process, perhaps too late for clinical relevance, we studied the qualitative appearance of the callus 5 weeks after fracture
Entire functions with Julia sets of positive measure
Let f be a transcendental entire function for which the set of critical and
asymptotic values is bounded. The Denjoy-Carleman-Ahlfors theorem implies that
if the set of all z for which |f(z)|>R has N components for some R>0, then the
order of f is at least N/2. More precisely, we have log log M(r,f) > (N/2) log
r - O(1), where M(r,f) denotes the maximum modulus of f. We show that if f does
not grow much faster than this, then the escaping set and the Julia set of f
have positive Lebesgue measure. However, as soon as the order of f exceeds N/2,
this need not be true. The proof requires a sharpened form of an estimate of
Tsuji related to the Denjoy-Carleman-Ahlfors theorem.Comment: 17 page
An approximate model for cancellous bone screw fixation
This is the author's accepted manuscript. The final published article is available from the link below. Copyright @ 2013 Taylor & Francis.This paper presents a finite element (FE) model to identify parameters that affect the performance of an improved cancellous bone screw fixation technique, and hence potentially improve fracture treatment. In cancellous bone of low apparent density, it can be difficult to achieve adequate screw fixation and hence provide stable fracture fixation that enables bone healing. Data from predictive FE models indicate that cements can have a significant potential to improve screw holding power in cancellous bone. These FE models are used to demonstrate the key parameters that determine pull-out strength in a variety of screw, bone and cement set-ups, and to compare the effectiveness of different configurations. The paper concludes that significant advantages, up to an order of magnitude, in screw pull-out strength in cancellous bone might be gained by the appropriate use of a currently approved calcium phosphate cement
Wnt signaling and orthopedics, an overview
Wnt signaling is a ubiquitous system for intercellular communication, with multiple functions during development and in homeostasis of the body. It comprises several ligands, receptors, and inhibitors. Some molecules, such as sclerostin, appear to have bone-specific functions, and can be targeted by potential drugs. Now, ongoing clinical trials are testing these drugs as treatments for osteoporosis. Animal studies have also suggested that these drugs can accelerate fracture healing and implant fixation. This brief overview focuses on currently available information on the effects of manipulations of Wnt signaling on bone healing
Parathyroid Hormone Treatment Increases Fixation of Orthopedic Implants with Gap Healing: A Biomechanical and Histomorphometric Canine Study of Porous Coated Titanium Alloy Implants in Cancellous Bone
Parathyroid hormone (PTH) administered intermittently is a bone-building peptide. In joint replacements, implants are unavoidably surrounded by gaps despite meticulous surgical technique and osseointegration is challenging. We examined the effect of human PTH(1–34) on implant fixation in an experimental gap model. We inserted cylindrical (10 × 6 mm) porous coated titanium alloy implants in a concentric 1-mm gap in normal cancellous bone of proximal tibia in 20 canines. Animals were randomized to treatment with PTH(1–34) 5 μg/kg daily. After 4 weeks, fixation was evaluated by histomorphometry and push-out test. Bone volume was increased significantly in the gap. In the outer gap (500 μm), the bone volume fraction median (interquartile range) was 27% (20–37%) for PTH and 10% (6–14%) for control. In the inner gap, the bone volume fraction was 33% (26–36%) for PTH and 13% (11–18%) for control. At the implant interface, the bone fraction improved with 16% (11–20%) for PTH and 10% (7–12%) (P = 0.07) for control. Mechanical implant fixation was improved for implants exposed to PTH. For PTH, median (interquartile range) shear stiffness was significantly higher (PTH 17.4 [12.7–39.7] MPa/mm and control 8.8 [3.3–12.4] MPa/mm) (P < 0.05). Energy absorption was significantly enhanced for PTH (PTH 781 [595–1,198.5] J/m2 and control 470 [189–596] J/m2). Increased shear strength was observed but was not significant (PTH 3.0 [2.6–4.9] and control 2.0 [0.9–3.0] MPa) (P = 0.08). Results show that PTH has a positive effect on implant fixation in regions where gaps exist in the surrounding bone. With further studies, PTH may potentially be used clinically to enhance tissue integration in these challenging environments
Bone defects following curettage do not necessarily need augmentation: A retrospective study of 146 patients
Background and purpose The natural pattern of bone healing in large bony defects following curettage alone as treatment of benign bone tumors around the knee is not well reported. We analyzed the outcome in 146 patients
- …