461 research outputs found

    Effects of deleting cannabinoid receptor-2 on mechanical and material properties of cortical and trabecular bone

    Get PDF
    Acknowledgements We thank Dr J.S. Gregory for assistance with Image J and Mr K. Mackenzie for assistance with Micro-CT analysis. Funding ABK was funded by a University of Aberdeen, Institute of Medical Sciences studentship and the Overseas Research Students Awards Scheme.Peer reviewedPublisher PD

    Mechanical and material properties of cortical and trabecular bone from cannabinoid receptor-1-null (Cnr1-/-) mice

    Get PDF
    Funding ABK was funded by a studentship from the University of Aberdeen, Institute of Medical Sciences, and the Overseas Research Students Awards Scheme Acknowledgments We are grateful to Dr J.S. Gregory for assistance with Image J and Mr K. Mackenzie for assistance with Micro-CT analysis.Peer reviewedPostprin

    Elliptical instability of a rapidly rotating, strongly stratified fluid

    Get PDF
    The elliptical instability of a rotating stratified fluid is examined in the regime of small Rossby number and order-one Burger number corresponding to rapid rotation and strong stratification. The Floquet problem describing the linear growth of disturbances to an unbounded, uniform-vorticity elliptical flow is solved using exponential asymptotics. The results demonstrate that the flow is unstable for arbitrarily strong rotation and stratification; in particular, both cyclonic and anticyclonic flows are unstable. The instability is weak, however, with growth rates that are exponentially small in the Rossby number. The analytic expression obtained for the growth rate elucidates its dependence on the Burger number and on the eccentricity of the elliptical flow. It explains in particular the weakness of the instability of cyclonic flows, with growth rates that are only a small fraction of those obtained for the corresponding anticyclonic flows. The asymptotic results are confirmed by numerical solutions of Floquet problem.Comment: 17 page

    The influence of the strength of bone on the deformation of acetabular shells : a laboratory experiment in cadavers

    Get PDF
    Date of Acceptance: 24/08/2014 ©2015 The British Editorial Society of Bone & Joint Surgery. The authors would like to thank N. Taylor (3D Measurement Company) for his work with regard to data acquisition and processing of experimental data. We would also like to thank Dr A. Blain of Newcastle University for performing the statistical analysis The research was supported by the NIHR Newcastle Biomedical Research Centre. The authors P. Dold, M. Flohr and R. Preuss are employed by Ceramtec GmbH. Martin Bone received a salary from the joint fund. The author or one or more of the authors have received or will receive benefits for personal or professional use from a commercial party related directly or indirectly to the subject of this article. This article was primary edited by G. Scott and first proof edited by J. Scott.Peer reviewedPostprin
    corecore