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Elliptical instability of a rapidly rotating, strongly stratified fluid
J. M. Aspden and J. Vanneste
School of Mathematics and Maxwell Institute for Mathematical Sciences, University of Edinburgh,
Edinburgh EH9 3JZ, United Kingdom

�Received 2 February 2009; accepted 6 June 2009; published online 15 July 2009�

The elliptical instability of a rotating stratified fluid is examined in the regime of a small Rossby
number and order-one Burger number corresponding to rapid rotation and strong stratification. The
Floquet problem describing the linear growth of disturbances to an unbounded, uniform-vorticity
elliptical flow is solved using exponential asymptotics. The results demonstrate that the flow is
unstable for arbitrarily strong rotation and stratification; in particular, both cyclonic and anticyclonic
flows are unstable. The instability is weak, however, with growth rates that are exponentially small
in the Rossby number. The analytic expression obtained for the growth rate elucidates its
dependence on the Burger number and on the eccentricity of the elliptical flow. It explains, in
particular, the weakness of the instability of cyclonic flows, with growth rates that are only a small
fraction of those obtained for the corresponding anticyclonic flows. The asymptotic results are
confirmed by numerical solutions of the Floquet problem. © 2009 American Institute of Physics.
�DOI: 10.1063/1.3177354�

I. INTRODUCTION

Elliptical instability, the three-dimensional instability of
two-dimensional flows with elliptical streamlines, has been
the focus of a great deal of research activity. The review in
Ref. 1 discusses the main results up to 2002 and emphasizes
the relevance of elliptical instability to a broad range of ap-
plications. One of these is the instability of two-dimensional
vortices that are deformed elliptically by a large-scale strain
flow. This is especially important for the dynamics of the
atmosphere and ocean since this is characterized by an abun-
dance of vortices that are deformed through either mutual
interactions or the effect of large-scale flows. In this context,
however, the planetary rotation and density stratification
need to be taken into account.

Rotation and stratification clearly exert a strong influ-
ence on elliptical instability: Since this stems from the para-
metric resonance between the periodic fluctuations associ-
ated with the elliptical motion and the free waves supported
by the flow, the dispersion relation of these waves is critical.
In the presence of both rotation and stratification, the waves
are inertia-gravity waves whose frequency is bounded from
below by the minimum of the Coriolis parameter f and
Brunt–Väisälä frequency N. As a consequence, a vortex of
fixed vorticity ceases to be unstable by the subharmonic in-
stability responsible for the simplest form of elliptical insta-
bility when both f and N exceed a certain threshold. As these
parameters increase further, instabilities are limited to reso-
nances of higher and higher order, leading to decreasing
growth rates. This was clearly demonstrated by Miyazaki2 on
the basis of numerical solutions of the Floquet problem that
models elliptic instability �see also Refs. 1 and 3�. Further
numerical results were obtained by McWilliams and
Yavneh,4 who concentrated on the regime of rapid rotation
and strong stratification with N� f most relevant to the at-
mosphere and ocean. Their broad motivation was the role
that instabilities play in the generation of inertia-gravity-

wave-like motion, and the resulting breakdown of the nearly
geostrophic and hydrostatic balance that is typical of much
of the atmosphere and ocean. The present paper shares the
same motivation. It re-examines the elliptical instability of a
rotating stratified fluid and derives explicit analytical results
in the limit of fast rotation f�� and strong stratification
N��, where � denotes the �relative� vorticity of the flow.

Several recent papers5–8 have demonstrated in specific
examples that instabilities of well-balanced basic flows to
inertia-gravity-wave perturbations �or perturbations related
to similar fast waves� have growth rates that are exponen-
tially small in the Rossby number, here proportional to
� / f�1.9 Theoretical arguments10,11 indicate that this is a
generic property, and the elliptical instability examined in
this paper is no exception. In this case, the exponential
smallness can be roughly understood by noting that in the
manner typical of parametric instabilities,12 the growth rates
of the elliptical instability can be expected to be proportional
to �n, where n is the order of the resonance. Since, as
pointed out by Miyazaki,2 the minimum n is of the order f /�
�for N� f�, this leads to the conclusion that growth rates are
beyond all orders in the Rossby number. To go further than
this rough argument and provide an estimate for the growth
rate requires the exponential-asymptotics analysis of the Flo-
quet problem relevant to the elliptical instability. We carry
out this analysis and, rather than relying on general
asymptotic results for Hill’s equations,13 directly relate the
growth of solutions to the occurrence of a Stokes
phenomenon14 which we capture using a combination of
WKB expansion and matched asymptotics in complex time.
The analytical results are confirmed by the numerical solu-
tions of the Floquet problem.

One of the issues which our treatment clarifies is the
difference between the instability of cyclonic and anticy-
clonic vortices in the presence of both rapid rotation and
strong stratification. Cyclones have been recognized as less
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unstable than anticyclones, to the extent that McWilliams
and Yavneh4 considered only the instability of the latter. We
show that the cyclones are in fact linearly unstable, with
growth rates that have the same exponential dependence on
the Rossby number as the corresponding anticyclones but
differ by a factor which, although formally of order one,
turns out to be numerically very small.

The plan of this paper is as follows. In Sec. II, we for-
mulate the problem of elliptical instability in a rotating strati-
fied fluid modeled using the Boussinesq approximation. We
use the simplest instance of elliptical instability, that of an
unbounded elliptical vortex with uniform vorticity. This
makes it possible to seek global solutions in the form of
plane waves with time-periodic wavevector and an amplitude
that satisfies Hill’s equation. �Results for this particular case
have a much broader appeal, however, since an identical
Hill’s equation arises when the stability of more general el-
liptical vortices is examined locally using the geometric-
optics technique.15–17� The Floquet problem associated with
Hill’s equation is solved asymptotically in Sec. III in the
limit of fast rotation and strong stratification, with the eccen-
tricity of the elliptical streamlines assumed of order one. For
simplicity, we also make the hydrostatic approximation as-
suming that N� f and an order-one Burger number. The
asymptotic derivation is only sketched in Sec. III, with tech-
nical details relegated to Appendix A. The asymptotic results
are confirmed by direct numerical solution of the Floquet
problem in Sec. IV. The effect of a finite N / f is also briefly
examined there.

II. FORMULATION

We consider the stability of a horizontal elliptical flow in
a three-dimensional stratified fluid, with constant Brunt–
Väisälä frequency N, rotating about the vertical axis at rate
f /2�0. The flow’s streamfunction, velocity, and vorticity
are written as

� = − 1
2 �bx2 + ay2�, U = �ay,− bx,0�, and � = − �a + b� ,

�2.1�

where ab�0. We define

� = sgn a = sgn b

and note that the flow is anticyclonic for �=1, and cyclonic
for �=−1. Three dimensionless parameters characterize the
flow, namely,

e = �a/b, � = �ab/f , and f/N , �2.2�

which are recognized as the aspect ratio of the elliptical flow,
a Rossby number, and the Prandtl ratio. We assume that
e�1 without loss of generality.

Perturbations to the flow �2.1� take the form of plane
waves with time-dependent wavevector, with each field writ-
ten as

u�x,t� = û�t�eik�t�·x, �2.3�

where the wavevector k= �k , l ,m� satisfies

k̇ = bl, l̇ = − ak, and ṁ = 0, �2.4�

the overdot denoting differentiation with respect to t. In what
follows, we use a dimensionless time variable obtained by
taking �ab�−1/2 as a reference time. In terms of this variable,
the solutions to Eq. �2.4� have the simple form

k = k0 cos t, l = − �ek0 sin t, and m = m0, �2.5�

where k0 and m0 are constant. The stability of Eq. �2.1� de-
pends on the behavior of the amplitudes û�t�, v̂�t�, etc., as
t→�. These satisfy a set of ordinary differential equations
with time-periodic coefficients. Following McWilliams and
Yavneh,4 this set can be conveniently reduced to a single
second-order equation for the amplitude of the vertical com-

ponent of the vorticity 	̂= i�lv̂−kû�. See Appendix A for de-
tails. Assuming that the perturbation potential vorticity van-
ishes, this equation reduces to

	̈ +
2�klm2�e − e−1�

2�k2 + l2�

	̇ +
1

�2��1 − ���e + e−1���1 −
2��ek0

2

k2 + l2 �m2


2

+
N2�k2 + l2�

f2
2 		 = 0, �2.6�

where 
2=k2+ l2+m2 and we have omitted the hat on the
amplitude 	. Four dimensionless parameters appear in this
equation: the three flow parameters �2.2�, and the initial as-
pect ratio m0 /k0 of the perturbation.

Most of this paper focuses on a limiting case of Eq. �2.6�
obtained by making the hydrostatic approximation. This as-
sumes that m0�k0 and N� f while

� =
fm0

Nk0
= O�1� . �2.7�

This is the regime most relevant to the dynamics of the at-
mosphere and oceans since the condition N� f is verified
while, as we demonstrate below, the largest growth rates of
the elliptical instability correspond to �=O�1�. The param-
eter � can be recognized as the inverse square root of a
Burger number; it can be interpreted as the aspect ratio of the
perturbation scaled by f /N as is natural in rapidly rotating,
strongly stratified fluids.

In the hydrostatic approximation, 
2 is approximated by
m2, and Eq. �2.6� reduces to

	̈ +
2�kl�e − e−1�

k2 + l2 	̇ +
1

�2��1 − ���e + e−1���1 −
2��ek0

2

k2 + l2 �
+

N2�k2 + l2�
f2m2 		 = 0. �2.8�

Using Eq. �2.5� and defining ��0 by

e2 = 1 + �2, �2.9�

we rewrite this equation as
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	̈ − p�t�	̇ +
1

�2 �2�t� − �q�t� + �2r�t��	 = 0. �2.10�

Here

2 = 1 +
N2�k2 + l2�

f2m2 = 1 + �−2�1 + �2 sin2 t� �2.11�

can be recognized as the square of the inertia-gravity-wave
frequency �nondimensionalized by f�. We have also
introduced

p�t� =
�2 sin�2t�

1 + �2 sin2 t
, q�t� = ��e + e−1 +

2e

1 + �2 sin2 t
� ,

�2.12�

and r�t� =
2�e2 + 1�

1 + �2 sin2 t
.

Equation �2.10� is a Hill equation, with coefficients that
are �-periodic in t. Its stability is determined using the
Floquet theory for Hill equations.12 We briefly recall the
main result of this theory. Let 	1�t� and 	2�t� denote two
linearly independent solutions of Eq. �2.10�, and let us form
the column vector ��t�= �	1�t� ,	2�t��T. The �-periodicity of
the coefficients in Eq. �2.10� implies that

��t + �� = M��t�

for some constant matrix M. The eigenvalues � of M are
then the Floquet multipliers, and two fundamental solutions
can be found for which

	�t� = e�t��t� , �2.13�

where

� =
1

�
log � �2.14�

is the Floquet exponent, and ��t� is �-periodic. Note that the

form of the coefficient of 	̇ ensures that the two multipliers
satisfy �1�2=1. Instability occurs when one of these is such
that 
�
�1 or, equivalently, Re ��0. The matrix M is com-

puted by relating � and �̇ at two times t and t+�. Here we
choose t=−� /2 and compute M as

M = ����/2�, �̇��/2�����− �/2�, �̇�− �/2��−1. �2.15�

Our aim is to determine the largest values of the growth
rate Re � for Eq. �2.10� analytically in the fast-rotation re-
gime ��1, with N� f , �=O�1�, and �=O�1�. In this regime
Eq. �2.10� resembles the Hill equations with large parameters
whose stability was studied by Weinstein and Keller13 using
a mapping to parabolic cylinder functions. However, there
are difficulties in applying their results directly, related to the
presence of a first derivative term that is singular for the
complex values of t such that k2+ l2=0. We have therefore
found it simpler to develop a different approach, combining
WKB analysis with complex-time matching. This approach,
which has the advantage of demonstrating the link between
the instability and the Stokes phenomenon,14,18 is described

in Sec. III and in Appendix B. The analytic results obtained
there are confirmed and extended to finite N / f in Sec. IV by
solving Eq. �2.10� numerically.

III. WKB ANALYSIS

A WKB solution of the form

	�t� = A�t�ei��t�/� �3.1�

can be introduced into Eq. �2.10� and the �real� functions
A�t� and ��t� can be sought as the asymptotic series

A = A0 + �A1 + ¯ and � = �0 + ��1 + ¯ . �3.2�

Introducing Eqs. �3.1� and �3.2� into Eq. �2.10�, we find at
leading order that

�0�t� = �
−�/2

t

�t��dt�. �3.3�

At the next order, we have

Ȧ0

A0
= −

̇

2
+

p

2
, �3.4�

�̇1 = −
q

2
. �3.5�

We note that A0�t� is �-periodic since p�t� has zero mean in
�−� /2,� /2�. Pursuing the computation to higher orders
suggests that all the An�t� ,n=0,1 , . . . are �-periodic. This
can be confirmed by considering the Wronskian of the pair of
solutions

	 = A�t�ei��t�/� and 	̄ = A�t�e−i��t�/�. �3.6�

This function, defined by W= 	̇	̄−		̇̄=2i�−1A2�̇, satisfies

Ẇ= pW and hence is �-periodic. Now, the recurrence rela-
tions for An and �n �of which Eqs. �3.4� and �3.5� are the first

terms� give �̇n in terms of periodic functions and the Am for
m�n. The periodicity of the An then follows inductively
from that of the Wronskian.

The periodicity of the asymptotic series for A�t� implies
that there is no instability to any algebraic order in �. To all
algebraic orders, the fundamental solutions are given by
Eq. �3.6� and the Floquet multipliers are simply
�=exp��i��� /2�� �taking ��−� /2�=0� and satisfy 
�
=1.
Any instability is necessarily due to exponentially small ef-
fects. To capture the instability and estimate its growth rate,
we therefore need to go beyond the standard WKB analysis
and examine how exponentially small terms alter the form
�3.6� of the solutions. These terms arise through a Stokes
phenomenon associated with the presence of complex turn-
ing points, that is, complex values of t for which �t�=0.
From these points emanate lines of the complex t-plane,
termed Stokes lines, across which solutions defined by
asymptotic series such as Eq. �3.2� acquire an additional ex-
ponentially small multiple of other linearly independent so-
lutions. �See Refs. 19–22 for the analysis of the Stokes phe-
nomenon in a variety of problems.�
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Since the matrix M in Eq. �2.15� depends only on the
solution vector � at t=�� /2, the only Stokes lines relevant
to our problem are those crossing the real t-axis between
−� /2 and � /2. As explained in Appendix B, there is only
one such line, namely �a segment of� the line Re t=0.

Across this line, the asymptotic solutions 	 and 	̄ in Eq. �3.6�
switch on an exponentially small multiple of 	̄ and 	, respec-
tively. More specifically, Eq. �3.6� defines a pair of indepen-
dent solutions that is valid for −� /2� t�−�, for some
�1/2���1. When crossing Re t=0, these solutions gain ad-
ditional terms; for �� t�� /2, they become

	 = A�t��ei��t�/� + Se−i��t�/�� and 	̄ = A�t��e−i��t�/� + S̄ei��t�/�� ,

�3.7�

where S is an exponentially small constant. This constant, the

Stokes multiplier, is computed in Appendix B and its modu-
lus is given explicitly in Eq. �3.12� below. Note that A�t� and
��t� appearing in Eqs. �3.6� and �3.7� are defined by the
asymptotic series �3.2�, which diverge and must be truncated.
The theory of the Stokes phenomenon19 shows that optimal
truncation, in which the series are truncated near their small-
est term, leads to truncation errors that are asymptotically
smaller than the Stokes multiplier S. Thus Eqs. �3.6� and
�3.7� can be interpreted consistently by regarding A�t� and
��t� as defined by their asymptotic series truncated optimally.
We adopt this interpretation and carry out our analysis ne-
glecting all o�S� terms.

The Stokes multiplier S turns out to determine com-
pletely the leading-order form of the maximum growth rate
of the instability. To show this, we compute the matrix M in

Eq. �2.15� taking �= �	 , 	̄�T. We first have that

����/2�, �̇��/2�� = �A�ei�/� + Se−i�/�� �i�−1�̇A + Ȧ�ei�/� + S�− i�−1�̇A + Ȧ�e−i�/�

A�e−i�/� + S̄ei�/�� �− i�−1�̇A + Ȧ�e−i�/� + S̄�i�−1�̇A + Ȧ�ei�/�� ,

where A, Ȧ, �, and �̇ are evaluated at t=� /2. Similarly,

���− �/2�, �̇�− �/2�� = �A i�−1�̇A + Ȧ

A − i�−1�̇A + Ȧ
� .

Here A, Ȧ, and �̇ can be evaluated at t=� /2, as above, since
these functions �defined by their optimally truncated series
expansion� are �-periodic. Computing Eq. �2.15� gives the
simple result

M = � ei�/� Se−i�/�

S̄ei�/� e−i�/� � . �3.8�

Here �=��� /2� or, more generally, �=��� /2�−��−� /2�
which accommodates any convention for the arbitrary choice
of ��−� /2�.

It is now readily checked that up to o�S� errors, the Flo-
quet multipliers, that is, the eigenvalues � of Eq. �3.8�, sat-
isfy 
�
=1 unless M is degenerate or nearly degenerate, in
the sense that exp�i��=exp�−i��+O�S�. Thus the condition
for instability 
�
�1 requires that exp�i�� is exponentially
close to �1.23 We therefore suppose that the parameters e, �,
and � are such that

ei�/� = � �1 + iT� + o�S� �3.9�

for some T�R of a similar order of magnitude as S. The
Floquet multipliers obtained from Eq. �3.8� are then given by

� = � �1 + �
S
2 − T2� + o�S� and

�3.10�
� = � �1 − �
S
2 − T2� + o�S� .

Clearly, one of these multipliers satisfies 
�
�1, and the flow
is unstable, provided that −
S
�T� 
S
, that is, in exponen-
tially narrow instability bands. The corresponding growth
rate �=�
S
2−T2 /�+o�S� is maximum at the center of these
bands, for T=0, and is given by

�max �

S

�

. �3.11�

The computation of S is carried out in Appendix B. There we
show that


S
 = e−�/�+��, �3.12�

where

� =
2

�
�

0

�1+�2/��1 + �2 − �2x2

1 + x2 dx �3.13�

and

� = � �–
0

�1+�2/� �e + e−1 +
2e

1 − �2x2�
�

dx
��1 + �2 − �2x2��1 + x2�

. �3.14�

Here – denotes the Cauchy principal value of the integral,
whose integrand is singular at x=1 /�.

Figure 1 shows the values of � and � as functions of e
and �. Some conclusions can be drawn from the figure and
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the examination of the explicit expressions �3.13� and �3.14�.
First, �→� in the limits of both small and large �; specifi-
cally �=O��−1� as �→0 and �=O�log �� as �→�. This
suggests, as is confirmed by Fig. 1, that the largest growth
rates are attained for �=O�1�. Thus, the aspect ratio of the
perturbations that grow as a result of the elliptical instability
of vortices should be expected to be the Prandlt ratio:
m0 /k0=O�N / f�. Second, the behavior of � for small and
large eccentricity is given by

� � −
2�1 + �2

�
�log � + 1 − 2 log 2 −

1

2
log�1 + �2��

as �→ 0, �3.15�

� �
�1 + �2��

2��
as �→ � . �3.16�

The large-� expression �3.16� can actually be used to esti-
mate � for values of � as small as 1, which makes it very
useful. �For �=1, for instance, the errors in Eq. �3.16� are
15%, 10%, and 5% for �=1, 1.5, and 2, respectively.� This

expression shows, in particular, that the largest growth rates
are attained precisely for ��1 when � is large. Third, the
obvious fact that ��0 shows that anticyclonic flows ��=1�
are more unstable than cyclonic flows ��=−1�. According to
Eq. �3.12�, the growth rate in an anticyclonic flow is a factor
exp�2�� larger than the growth rate of the corresponding
cyclonic flow. Formally, this is an O�1� factor, but the typical
values of � are such that it is numerically very small so that
the instability of cyclones is exceedingly weak and probably
negligible in most circumstances. Note that because � is a
decreasing function of e, the asymmetry between cyclones
and anticylones is the largest for small eccentricity.

Formulas �3.11�–�3.14� give completely explicitly ex-
pressions for the maximum growth rates of the elliptical
instability in terms of the three parameters �, � and e
�recall that �=�e2−1�. These growth rates are achieved
when the three parameters are related in such a way that
exp�i� /��=�1, that is,

� = n��, n = 1,2, . . . . �3.17�

This condition can be recognized as a resonance condition
between the phase of the inertia-gravity oscillations and the
period of rotation around the elliptical vortex �2� in the di-
mensionless time used here�.

The growth rates can be written more directly in terms of
�, �, and e by solving Eq. �3.17� perturbatively, with
�=�0+��1+¯, and �0 and �1 obtained from Eqs. �3.3� and
�3.5�. This gives the approximate position of the instability
bands as well as their width. To leading order, the instability
bands are centered at values of e and � satisfying

�0 =
1

�
�

−�/2

�/2
�1 + �2 + �2 sin2 tdt

=
2

�
�

0

1�1 + �2 + �2x2

1 − x2 dx = n��, n = 1,2, . . . . �3.18�

The computation of the correction ��1 is more involved.
Note that it is, in principle, needed to obtain a leading-order
approximation to the growth rate Re � as a function of e and
�. This is because the error on � needs to be o���, which
requires to approximate the resonance values of e and � with
an o��� error also. We do not pursue these detailed compu-
tations here: since the values of e and � satisfying the reso-
nance condition �3.17� are �-close together, Eq. �3.11� pro-
vides a useful approximation to the growth rates of the
instability without the need to locate the resonances accu-
rately. This is demonstrated in Sec. IV where we compare the
prediction �3.11� with numerical solutions of the Floquet
problem associated with Eq. �2.8�.

Note that the instability-band width can be deduced di-
rectly from expression �3.18� for �0. For fixed � and e, for
instance, T in Eq. �3.9� can be written as T=�−1�����,
where �� is the distance between � and the resonant values,
and the derivative is evaluated at resonance. According to
Eq. �3.10�, the instability bandwidth is therefore
��=2�
S
 /���, where � can be approximated by �0.
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FIG. 1. Parameters � and � governing the maximum growth rates according
to Eqs. �3.11� and �3.12� as functions of e and �.
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IV. COMPARISON WITH NUMERICAL RESULTS

We have solved the Floquet problem associated with Eq.
�2.10� for the amplitude 	 numerically using MATLAB’s stan-
dard Runge–Kutta solver. The growth rates Re � obtained in
this manner are compared to the asymptotic estimate �3.11�
for �max. To emphasize the exponential dependence on the
inverse Rossby number 1 /�, it is convenient to display Re �
as a function of 1 /� for fixed values of � and of e. Figures
2�a� and 2�b� summarize the results obtained for several
anticyclonic vortices �with �=1� and cyclonic vortices
��=−1�, respectively. They display in linear-logarithmic co-
ordinates the local maxima of the growth rates obtained nu-
merically as � is varied. The corresponding asymptotic pre-
dictions �3.11� are shown as line segments. The maximum
growth rates displayed correspond to resonant values of 1 /�
for fixed e and �. Figures 3 and 4 illustrate the complete
structure of the instability bands that surround the resonant
values by showing all the nonzero growth rates obtained nu-

merically, in linear coordinates and for the parameters of
Figs. 2�a� and 2�b�, respectively.

The figures confirm the validity of our asymptotic esti-
mate. They also suggest that this estimate remains useful for
moderately small values of �, say ��1 /2. Note that the di-
mensional growth rates are obtained by multiplying � by
�ab which is related to the relative vorticity 
�
=a+b of the
flow by �ab= 
�
 / �e+e−1�. As expected from our asymptot-
ics, the growth rates in the case of cyclonic flows are exceed-
ingly small for ��1 even for the large eccentricities used in
Fig. 4. Nonetheless, our results clarify the fact that all ellip-
tical flows are unstable, regardless of the sense of the rota-
tion, of its strength, and of the strength of the stratification.
Note that the match between asymptotic and numerical re-
sults appears to degrade for small � �i.e., large 1 /��, espe-
cially for cyclonic flows; this is because the smallness of
both the growth rate and instability bandwidth makes the
maximum growth rate delicate to estimate numerically. In
particular, the agreement between asymptotic and numerical
result could be improved by using a finer resolution in 1 /�.

The separation between instability bands can be esti-
mated from the asymptotic formula �3.18�: in terms of the
varying 1 /� used in the figures, it is given by

� =
��

20
1�1 + �2 + �2x2

1 − x2 dx

.

Evaluating this quantity for the parameters chosen for the
figures gives �=0.62, 0.54, 0.31, and 0.34 for the parameters
of Figs. 3�a�–3�d�, and �=0.18 and 0.12 for the parameters
of Figs. 4�a� and 4�b�, in good agreement with the numerical
results.

Our derivation of an asymptotic expression for the
growth rate makes the hydrostatic approximation, which as-
sumes that N� f , m0�k0, and �= fm0 / �Nk0�=O�1�. This as-
sumption, which could be relaxed, is made because it corre-
sponds to the regime most relevant to atmospheric and
oceanic flows; it is consistent in the sense that the growth
rates obtained are maximized for �=O�1� and decay rapidly
for ��1 or ��1. To test the sensitivity of the results to the
hydrostatic approximation, we have solved the Floquet prob-
lem numerically for the full, unapproximated Eq. �2.6� for
moderately large values of N / f and m0 /k0. The results ob-
tained for �=1 and e=4 are displayed in Fig. 5. This com-
pares the growth rate obtained in the hydrostatic approxima-
tion with those obtained for N / f =m0 /k0=3 and 6. Except for
��1, there is relatively little difference between the results:
The maximum growth rates fall on the same curve, well
described by the hydrostatic asymptotics. Of course, the lo-
cation of the instability bands changes depending on S, but
this is not significant since they would also change if m0 /k0

was varied independently of N / f , as is physically relevant.
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APPENDIX A: DERIVATION OF EQUATION „2.6…

The equations that govern an inviscid stratified
Boussinesq fluid rotating with constant Coriolis frequency f
are

Dtu − fv = − px, �A1�

Dtv + fu = − py , �A2�

Dtw + � = − pz, �A3�

Dt� − N2w = 0, �A4�

ux + vy + wz = 0, �A5�

where �u ,v ,w� are the usual Cartesian velocity components
and Dt=�t+u�x+v�y +w�z is the material derivative. The
variable � is a scaled density, such that the total density is
given by

�tot = �b +
�b

g
�− N2z + ��x,y,z,t�� , �A6�

where �b is the uniform background density, and N is the
Brunt–Väisälä frequency. The Boussinesq approximation as-
sumes that 
�tot−�b
��b.

We seek solutions that are the sum of the elliptical flow
�2.1� and the small-amplitude plane wave with time-
dependent wavevector �2.3�. Thus we introduce the decom-
position

�u,v,w,�,p� = �ay,− bx,0,0,b�a − f�x2/2 + a�b − f�y2/2�

+ �û�t�, v̂�t�,ŵ�t�, �̂�t�, p̂�t��eik�t�·x �A7�

into Eqs. �A1�–�A5� and linearize the resulting equations.
Imposing that the wavevector components satisfy Eq. �2.4�
eliminates the terms that depend explicitly on x and y, leav-
ing a system of five ordinary differential equations for
�û�t� , v̂�t� , ŵ�t� , �̂�t� , p̂�t��. This system is simplified by intro-
ducing the amplitudes of the vertical component of vorticity

	̂= ikv̂− ilû and of the horizontal divergence �̂= ikû+ ilv̂.
These amplitude are found to satisfy
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FIG. 3. Growth rates Re � in anticyclonic flows as functions of the inverse Rossby number 1 /� for �a� e=1.5, �=1; �b� e=2, �=1; �c� e=2, �=0.5; and
�d� e=4, �=1. The growth rates computed numerically �solid lines� are compared with the asymptotic estimate of the maximum growth rates �max �dashed
lines�.
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	̇̂ = �a + b − f��̂ , �A8�

�̇̂ =
i�k2 + l2�

m
��̂ + ẇ̂� + � f −

2�k2a + l2b�
k2 + l2 �	̂

+
2�b − a�kl

k2 + l2 �̂ . �A9�

The vertical velocity ŵ can be eliminated from Eq. �A9�
using that �̂+ imŵ=0. To eliminate the density �̂, we first
obtain the conservation q̇̂=0 for the �scaled� potential vortic-

ity q̂=N2	̂+ i�a+b− f�m�̂. Assuming that q̂�t�= q̂�0�=0 then

reduces Eqs. �A8� and �A9� to two coupled equations for 	̂

and �̂, respectively. Eliminating �̂ and removing the hat of 	̂
finally leads to Eq. �2.6�.

APPENDIX B: EXPONENTIAL ASYMPTOTICS

In this appendix, we compute the �exponentially small�
Stokes multiplier S which quantifies the switching on of one
branch of the WKB solution by the other �see Eqs. �3.6� and
�3.7�� through a Stokes phenomenon.14,18 The Stokes phe-

nomenon is associated with the presence of complex turning
points, that is, complex times where =0. From Eq. �2.11�,
these are located at

tn = i sinh−1
�1 + �2

�
+ n�, n = 0, � 1, � 2, . . .

and t̄n. The Stokes phenomenon occurs across Stokes lines,
which are defined by Retn

t �t��dt�=0. Our interest is in the
Stokes lines crossing the interval �−� /2,� /2�. It is easy to
see that the segment of Re t=0 joining t0 to t̄0 is such a
Stokes line; it is also the only one since for −� /2� t�� /2,
Ret0

t �t��dt�=Re0
t�t��dt�=0

t�t��dt��0 unless t=0.
We compute S using matched asymptotics, examining

how the solution 	=A�t�exp�i��t� /�� connects to the solution
	=A�t��exp�i��t� /��+S exp�−i��t� /��� as this segment is
crossed.21 To analyze the behavior of the solution in the
neighborhood of t0, we first note that

 � a1/2ei�/4�t − t0�1/2, where

�B1�
a = �2�1 + �2��1 + �2 + �2�/�2,

as t→ t0. We then rescale the evolution equation for 	 near t0

by defining the inner variables

� = �−2/3a1/3�t − t0� and Z��� = 	�t� .

Retaining only the leading-order terms, this transforms Eq.
�2.10� into the equation

d2Z

d�2 + i�Z = 0. �B2�

Solutions can be written in terms of the Airy functions
Ai�e−i�/6�� and Bi�e−i�/6��. We claim that the solution of in-
terest is
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FIG. 5. Effect of the hydrostatic approximation: The growth rate Re � is
plotted as a function of the inverse Rossby number 1 /� for an anticyclonic
flow with e=4 and �=1, in the hydrostatic limit N / f →� �solid lines�, for
N / f =6 �dashed lines�, and for N / f =3 �dotted lines�.
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FIG. 4. Growth rates Re � in cyclonic flows as functions of the inverse
Rossby number 1 /� for �a� e=4, �=0.5; and �b� e=6, �=0.5. The growth
rates computed numerically �solid lines� are compared to the asymptotic
estimate of the maximum growth rates �max �dashed lines�.
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Z � C�Ai�e−i�/6�� + i Bi�e−i�/6��� . �B3�

We verify that this solution matches A�t�exp�i��t� /�� to the
left of the Stokes line Re t=0; in doing so we find an ex-
pression for the constant C. It is convenient to verify the
matching along the line ph �=−5� /6; this is an anti-Stokes
line along which the two independent solutions of Eq. �B2�
have similar orders of magnitudes. Along this line, we can
use the asymptotic formulas24

Ai�− z� �
1

��z1/4cos�2z3/2/3 − �/4� , �B4�

Bi�− z� � −
1

��z1/4sin�2z3/2/3 − �/4� , �B5�

with z=−exp�−i� /6��=exp�5i� /6��→+�. Thus we have

Z �
Cei�/24

���1/4 e2iei�/4�3/2/3. �B6�

On the other hand, using Eqs. �3.4� and �3.5� the solution
	=A�t�exp�i��t��, valid in the outer region away from t0 and
to the left of the Stokes line Re t=0, can be written as

	 �
1

1/2e−�/2
t p�t��dt�/2ei�−1−�/2

t ��t��−�q�t��/�2�t����dt�

�
e−i�/8

��a�1/6�1/4e −
p�t��dt�/2ei�−1 −

��t��−�q�t��/�2�t����dt�

�e2iei�/4�2/3/3, �B7�

after using Eq. �B1�. Here  − denotes a contour joining −� /2
to t0 while remaining to the left of the Stokes line Re t=0.
Comparing Eq. �B7� with Eq. �B6� shows that 	 correctly
matches Z provided that

C =
��e−i�/6

��a�1/6 e −
p�t��dt�/2ei�−1 −

��t��−�q�t��/�2�t����dt�. �B8�

We now match Z with the outer solution valid to the right of
the Stokes line Re t=0. A connection formula for Airy
functions24 gives the alternative form

Z � 2Cei�/3 Ai�e−i5�/6�� , �B9�

for Eq. �B3�. Carrying out the matching on the anti-Stokes
line ph �=exp�−i� /6�, we can use the asymptotic formula
for Ai in Eq. �B4� to write that

Z �
Cei�/24

���1/4 �e2iei�/4�3/2/3 + ie−2iei�/4�3/2/3� �B10�

for 
�
→�. This should be matched with the form
	�t�=A�t��exp�i��t� /��+S exp�−i��t� /��� of the solution to
the right of the Stokes line. Using Eq. �B1� gives the
asymptotics

	 �
1

1/2e−�/2
t p�t��dt�/2�ei�−1−�/2

t ��t��−�q�t��/�2�t����dt�

+ Se−i�−1−�/2
t ��t��−�q�t��/�2�t����dt��

�
e−i�/8

��a�1/6�1/4e +
p�t��dt�/2

��ei�−1 +
��t��−�q�t��/�2�t����dt�e2iei�/4�3/2/3

+ Se−i�−1 +
��t��−�q�t��/�2�t����dt�e−2iei�/4�3/2/3� ,

where  + denotes a contour joining −� /2 to t0. This contour
crosses the Stokes line Re t=0 below the singular point tp of
p�t� and q�t�, given by tp= i sinh−1�1 /��. Taking Eq. �B8�
into account, the matching with Eq. �B10� gives the two
equations

e −
p�t�dt/2e−i −

q�t�/�t�dt/2 = e +
p�t�dt/2e−i +

q�t�/�t�dt/2, �B11�

ie −
p�t��dt�/2ei�−1 −

��t��−�q�t��/�2�t����dt�

= Se +
p�t��dt�/2e−i�−1 +

��t��−�q�t��/�2�t����dt�. �B12�

We can now deform the integration contours. The difference
 +

− −
reduces to an integral along a closed contour encir-

cling tp. Computing the corresponding residues using Eq.
�2.12� gives

Restp
p = 1 and Restp

q


= − i� .

Taking this into account confirms that Eq. �B11� is an iden-
tity. Using Restp

p=1 in Eq. �B12� gives the Stokes multi-
plier as

S = − ie2i�−1–−�/2
t0 ��t��−�q�t��/�2�t����dt�,

where the Cauchy principal value integral, denoted by –, is
necessary because q�t� has a pole at t= tp. It follows that 
S
,
giving the instability growth rate, can be written as


S
 = e−�/�+��,

where the two constants

� = − 2i�
0

t0

�t�dt and � = − i�–
0

t0 �q�t�
�t�

dt

are real, positive and independent of �. Using Eqs. �2.11� and
�2.12�, they can be given the more explicit forms

� =
2

�
�

0

sinh−1��1+�2/�� �1 − �2 sinh2 u + �2du ,

and

� = ���–
0

sinh−1��1+�2/���e + e−1 +
2e

1 − �2 sinh2 u
�

�
du

�1 − �2 sinh2 u + �2
,

and further transformed into the convenient expressions
�3.13� and �3.14�.
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