26 research outputs found

    The changing role of the local news media in enabling citizens to engage in local democracies

    Get PDF
    Using Leeds City Council in the United Kingdom as a case study, we analyse comparatively the changing role of local journalism in the public communications and engagement strategies of local government. Drawing on over 20 semi-structured interviews with elected politicians, Council strategists, mainstream journalists, and citizen journalists, the article explores perceptions of the mainstream news media's role versus new modes of communication in engaging and communicating with citizens. We evaluate the Council's perceptions of its online and offline practices of engagement with different publics, and focus in particular on their interactions with journalists, the news media, and citizen journalists. The article considers how moves towards digital modes of engagement are changing perceptions of the professional role orientations of journalists in mediating between the Council and the general public

    Differences in 5'untranslated regions highlight the importance of translational regulation of dosage sensitive genes

    Get PDF
    Background: Untranslated regions (UTRs) are important mediators of post-transcriptional regulation. The length of UTRs and the composition of regulatory elements within them are known to vary substantially across genes, but little is known about the reasons for this variation in humans. Here, we set out to determine whether this variation, specifically in 5’UTRs, correlates with gene dosage sensitivity. Results: We investigate 5’UTR length, the number of alternative transcription start sites, the potential for alternative splicing, the number and type of upstream open reading frames (uORFs) and the propensity of 5’UTRs to form secondary structures. We explore how these elements vary by gene tolerance to loss-of-function (LoF; using the LOEUF metric), and in genes where changes in dosage are known to cause disease. We show that LOEUF correlates with 5’UTR length and complexity. Genes that are most intolerant to LoF have longer 5’UTRs, greater TSS diversity, and more upstream regulatory elements than their LoF tolerant counterparts. We show that these differences are evident in disease gene-sets, but not in recessive developmental disorder genes where LoF of a single allele is tolerated. Conclusions: Our results confirm the importance of post-transcriptional regulation through 5'UTRs in tight regulation of mRNA and protein levels, particularly for genes where changes in dosage are deleterious and lead to disease. Finally, to support gene-based investigation we release a web-based browser tool, VuTR, that supports exploration of the composition of individual 5'UTRs and the impact of genetic variation within them

    The role of biophysical cohesion on subaqueous bed form size

    Get PDF
    Biologically active, fine-grained sediment forms abundant sedimentary deposits on Earth's surface, and mixed mud-sand dominates many coasts, deltas, and estuaries. Our predictions of sediment transport and bed roughness in these environments presently rely on empirically based bed form predictors that are based exclusively on biologically inactive cohesionless silt, sand, and gravel. This approach underpins many paleoenvironmental reconstructions of sedimentary successions, which rely on analysis of cross-stratification and bounding surfaces produced by migrating bed forms. Here we present controlled laboratory experiments that identify and quantify the influence of physical and biological cohesion on equilibrium bed form morphology. The results show the profound influence of biological cohesion on bed form size and identify how cohesive bonding mechanisms in different sediment mixtures govern the relationships. The findings highlight that existing bed form predictors require reformulation for combined biophysical cohesive effects in order to improve morphodynamic model predictions and to enhance the interpretations of these environments in the geological record

    Comparative proximity biotinylation implicates the small GTPase RAB18 in sterol mobilization and biosynthesis

    Get PDF
    Loss of functional RAB18 causes the autosomal recessive condition Warburg Micro syndrome. To better understand this disease, we used proximity biotinylation to generate an inventory of potential RAB18 effectors. A restricted set of 28 RAB18-interactions were dependent on the binary RAB3GAP1-RAB3GAP2 RAB18-guanine nucleotide exchange factor (GEF) complex. 12 of these 28 interactions are supported by prior reports and we have directly validated novel interactions with SEC22A, TMCO4 and INPP5B. Consistent with a role for RAB18 in regulating membrane contact sites (MCSs), interactors included groups of microtubule/membrane-remodelling proteins, membrane-tethering and docking proteins, and lipid-modifying/transporting proteins. Two of the putative interactors, EBP and OSBPL2/ORP2, have sterol substrates. EBP is a Δ8-Δ7 sterol isomerase and ORP2 is a lipid transport protein. This prompted us to investigate a role for RAB18 in cholesterol biosynthesis. We find that the cholesterol precursor and EBP-product lathosterol accumulates in both RAB18-null HeLa cells and RAB3GAP1-null fibroblasts derived from an affected individual. Further, de novo cholesterol biosynthesis is impaired in cells in which RAB18 is absent or dysregulated, or in which ORP2 expression is disrupted. Our data demonstrate that GEF-dependent Rab-interactions are highly amenable to interrogation by proximity biotinylation and may suggest that Micro syndrome is a cholesterol biosynthesis disorder

    Differential effects of nucleotide analogs on scanning-dependent initiation and elongation of mammalian mRNA translation in vitro

    No full text
    Codon–anticodon interactions are central to both the initiation and elongation phases of eukaryotic mRNA translation. The obvious difference is that the interaction takes place in the ribosomal A-site during elongation, whereas the 40S ribosomal subunit and associated initiation factors scan the mRNA sequence in search of an initiation codon with Met-tRNAi bound in the P-site, ceasing once codon–anticodon interaction is established at the AUG. As an indirect test of whether the two mechanisms of mRNA sequence inspection are basically similar or not, the effects of six different uridine analog substitutions in the mRNA were examined in reticulocyte lysate translation assays and 80S initiation complex formation assays. Four constructs, each with the same reporter coding sequence, were used, differing in whether the initiation codon was AUG or ACG, and in whether the 5′-UTR had U residues or not. Three analogs (5-bromoU, 5-aminoallylU, and pseudoU) inhibited both elongation and initiation, but the other three had striking differential effects. Ribothymidine had a negligible effect on elongation but caused a ∼50% inhibition of initiation, with little effect on actual AUG recognition, which implies that inhibition must have occurred at some earlier step in initiation. In complete contrast, 2′ deoxyU was prohibitive to elongation but had no effect on initiation, and 4-thioU actually stimulated initiation but quite strongly inhibited elongation processivity. These results show that the detailed mechanisms of inspection of the mRNA sequence during scanning-dependent initiation and elongation must be considerably different

    Identification and experimental validation of splicing regulatory elements in Drosophila melanogaster reveals functionally conserved splicing enhancers in metazoans

    Get PDF
    It has been established that alternative and constitutive splicing decisions are dictated in part by cis-acting RNA sequences known as splicing enhancers or inhibitors. Both types of elements can be found either in exons or introns. Here, the authors have used computational methods to identify predicted intronic and exonic splicing enhancers in Drosophila. Many of these were previously shown to be enhancers of vertebrates. The evolutionary implications of these findings are discussed

    Kaposi’s sarcoma-associated herpesvirus induces specialised ribosomes to efficiently translate viral lytic mRNAs

    No full text
    Viruses rely on the translational machinery of the host cell to synthesis viral proteins. We show that KSHV manipulates the composition of host cell ribosomes creating a specialised ribosome to specifically translate viral mRNAs
    corecore