71 research outputs found

    Women's cultural perceptions and attitudes towards breast cancer : Northern Ghana

    Get PDF
    This study investigates problems confronting breast cancer awareness in Ghana by ascertaining how societal perceptions and attitudes influence women's awareness of breast cancer in the Kassena-Nankana district. Data were gathered through focus group interviews and documentary analysis of current practices within the region. The data were then thematically analysed following an inductive analytical framework. The study concludes that women's perceptions of and attitudes towards breast cancer and its treatment are influenced by a myriad of economic and socio-cultural factors, which practitioners need to take into account when planning public health initiatives. There are a number of economic challenges facing breast cancer education and awareness programmes due to a lack of adequate numbers of specialized health personnel and breast cancer screening facilities in the district. Additionally, socio-cultural factors such as the absence of biomedical terminology in the local language, gender inequality and the prevailing influence of traditional health practitioners further compound the situation. Knowledge, awareness and attitudes of women towards breast cancer can also be improved if husbands of married women and respective community compound heads are targeted by public health educationists to get actively involved in education and awareness campaigns. The need to incorporate indigenous languages in public health educational materials for breast cancer in remote communities of deprived districts of Ghana is also recommended

    The effects of iron fortification on the gut microbiota in African children: a randomized controlled trial in Cote d'Ivoire.

    No full text
    BACKGROUND: Iron is essential for the growth and virulence of many pathogenic enterobacteria, whereas beneficial barrier bacteria, such as lactobacilli, do not require iron. Thus, increasing colonic iron could select gut microbiota for humans that are unfavorable to the host. OBJECTIVE: The objective was to determine the effect of iron fortification on gut microbiota and gut inflammation in African children. DESIGN: In a 6-mo, randomized, double-blind, controlled trial, 6-14-y-old Ivorian children (n = 139) received iron-fortified biscuits, which contained 20 mg Fe/d, 4 times/wk as electrolytic iron or nonfortifoed biscuits. We measured changes in hemoglobin concentrations, inflammation, iron status, helminths, diarrhea, fecal calprotectin concentrations, and microbiota diversity and composition (n = 60) and the prevalence of selected enteropathogens. RESULTS: At baseline, there were greater numbers of fecal enterobacteria than of lactobacilli and bifidobacteria (P < 0.02). Iron fortification was ineffective; there were no differences in iron status, anemia, or hookworm prevalence at 6 mo. The fecal microbiota was modified by iron fortification as shown by a significant increase in profile dissimilarity (P < 0.0001) in the iron group as compared with the control group. There was a significant increase in the number of enterobacteria (P < 0.005) and a decrease in lactobacilli (P < 0.0001) in the iron group after 6 mo. In the iron group, there was an increase in the mean fecal calprotectin concentration (P < 0.01), which is a marker of gut inflammation, that correlated with the increase in fecal enterobacteria (P < 0.05). CONCLUSIONS: Anemic African children carry an unfavorable ratio of fecal enterobacteria to bifidobacteria and lactobacilli, which is increased by iron fortification. Thus, iron fortification in this population produces a potentially more pathogenic gut microbiota profile, and this profile is associated with increased gut inflammation. This trial was registered at controlled-trials.com as ISRCTN21782274

    An update of malaria infection and anaemia in adults in Buea, Cameroon

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Anaemia is caused by many factors in developing countries including malaria. We compared anaemia rates in patients with malaria parasitaemia to that of patients without malaria parasitaemia.</p> <p>Findings</p> <p>A cross-sectional study was carried out from November 2007 to July 2008 in health units in Buea, Cameroon. Adult patients with fever or history of fever were included in the study. Information on socio-demographic variables and other variables was collected using a questionnaire. Malaria parasitaemia status was determined by microscopy using Giemsa stained thick blood smears. Haemoglobin levels were determined by the microhaematocrit technique.</p> <p>The study population consisted of 250 adult patients with a mean age of 29.31 years (SD = 10.63) and 59.44% were females. 25.60% of the patients had malaria parasitaemia while 14.80% had anaemia (haemoglobin < 11 g/dl). Logistic regression revealed that those with malaria parasitaemia had more anaemia compared to those without malaria parasitaemia(OR = 4.33, 95%CI = 1.21-15.43, p = 0.02) after adjusting for age, sex, rural residence, socioeconomic status, use of antimalarials, use of insecticide treated nets(ITN) and white blood cell count.</p> <p>Conclusions</p> <p>In adult patients with fever in this setting, malaria parasitaemia contributes to anaemia and is of public health impact. Our results also provide a baseline prevalence for malaria parasitaemia in febrile adults in health units in this setting.</p

    Iron Incorporation and Post-Malaria Anaemia

    Get PDF
    BACKGROUND: Iron supplementation is employed to treat post-malarial anaemia in environments where iron deficiency is common. Malaria induces an intense inflammatory reaction that stalls reticulo-endothelial macrophagal iron recycling from haemolysed red blood cells and inhibits oral iron absorption, but the magnitude and duration of these effects are unclear. METHODOLOGY/PRINCIPAL FINDINGS: We examined the red blood cell incorporation of oral administered stable isotopes of iron and compared incorporation between age matched 18 to 36 months old children with either anaemia post-malaria (n = 37) or presumed iron deficiency anaemia alone (n = 36). All children were supplemented for 30 days with 2 mg/kg elemental iron as liquid iron sulphate and administered (57)Fe and (58)Fe on days 1 and 15 of supplementation respectively. (57)Fe and(58)Fe incorporation were significantly reduced (8% vs. 28%: p<0.001 and 14% vs. 26%: p = 0.045) in the malaria vs. non-malaria groups. There was a significantly greater haemoglobin response in the malaria group at both day 15 (p = 0.001) and 30 (p<0.000) with a regression analysis estimated greater change in haemoglobin of 7.2 g/l (s.e. 2.0) and 10.1 g/l (s.e. 2.5) respectively. CONCLUSION/SIGNIFICANCE: Post-malaria anaemia is associated with a better haemoglobin recovery despite a significant depressant effect on oral iron incorporation which may indicate that early erythropoetic iron need is met by iron recycling rather than oral iron. Supplemental iron administration is of questionable utility within 2 weeks of clinical malaria in children with mild or moderate anaemia

    Factors contributing to delays in diagnosis of breast cancers in Ghana, West Africa

    Get PDF
    BACKGROUND: Late diagnoses and poor prognoses of breast cancer are common throughout Africa. METHODS: To identify responsible factors, we utilized data from a population-based case-control study involving 1,184 women with breast malignancies conducted in three hospitals in Accra and Kumasi, Ghana. Interviews focused on potential breast cancer risk factors as well as factors that might contribute to presentation delays. We calculated odds ratios (OR) and 95% confidence intervals (CI) comparing malignances with biopsy masses larger than 5 cm. (62.4% of the 1,027 cases with measurable lesions) to smaller lesions. RESULTS: In multivariate analyses, strong predictors of larger masses were limited education (OR=1.96, 95% CI 1.32–2.90 <primary vs. ≥senior secondary school), being separated/divorced or widowed (1.75, 1.18–2.60 and 2.25, 1.43–3.55, respectively, vs. currently married), delay in care seeking after onset of symptoms (2.64, 1.77–3.95 for ≥12 vs. ≤2 months), care having initially been sought from someone other than a doctor/nurse (1.86, 0.85–4.09), and frequent use of herbal medications/treatment (1.51, 0.95–2.43 for ≥3x/day usage vs. none),. Particularly high risks associated with these factors were found among less educated women; for example, women with less than junior secondary schooling who delayed seeking care for breast symptoms for 6 months or longer were at nearly 4-times the risk of more educated women who promptly sought assistance. CONCLUSIONS: Our findings suggest that additional communication, particularly among less educated women, could promote earlier breast cancer diagnoses. Involvement of individuals other than medical practitioners, including traditional healers, may be helpful in this process

    Iron metabolism and malaria.

    Get PDF
    Recent evidence from a large, randomized, controlled trial has suggested that the universal administration of iron to children in malaria-endemic areas is associated with an increase in adverse health outcomes. The purpose of this paper is to summarize the available ecologic and intervention trials related to iron and malaria in children, and to set these against current knowledge of the biology of host-pathogen interactions involving iron metabolism. We conclude that, although not fully consistent, the balance of evidence confirms that administration of iron (usually in combination with folic acid) increases the incidence of malaria when given without prophylaxis and in the absence of universal access to treatment. The mechanisms by which additional iron can benefit the parasite are far from clear. There is evidence to suggest that the apparent detrimental effect of iron supplementation may vary according to levels of antecedent iron status, the presence of hemoglobinopathies and glucose-6-phosphate dehydrogenase (G6PD) deficiency, and other host genetic variants, such as variants in haptoglobin. The effects of malaria on host iron metabolism are also reviewed and reveal that the key cause of malaria-induced anemia is a maldistribution of iron and suppression of erythropoiesis rather than an exacerbation of gross iron deficiency. We tentatively conclude that, if it is to be recommended, universal iron supplementation in malarious areas should only be considered in conjunction with some form of prophylaxis (e.g., intermittent preventive therapy [IPT]) or in the context of good health services with ready access to facilities for malaria diagnosis and treatment. An alternative approach would be to screen for anemia and target supplementation only to anemic children. With regard to treatment, there is good evidence that iron supplementation should be withheld until the treatment schedule is complete, both because iron may inhibit treatment and because the absorption of oral iron is blocked by the inflammatory response

    Adjusting for the acute phase response is essential to interpret iron status indicators among young Zanzibari children prone to chronic malaria and helminth infections.

    No full text
    The extent to which the acute phase response (APR) influences iron status indicators in chronic infections is not well documented. We investigated this relationship using reported recent fever and 2 acute phase proteins (APP), C-reactive protein (CRP), and alpha-1-acid glycoprotein (AGP). In a sample of 690 children matched on age and helminth infection status at baseline, we measured plasma for AGP, CRP, ferritin, transferrin receptor (TfR), and erythropoietin (EPO) and whole blood for hemoglobin (Hb) concentration, zinc protoporphyrin (ZPP), and malaria parasite density, and we obtained maternal reports of recent fever. We then examined the influence of the APR on each iron status indicator using regression analysis with Hb as the outcome variable. Ferritin was inversely related to Hb in the APR-unadjusted model. Adjusting for the APR using reported recent fever alone was not sufficient to reverse the inverse Hb-ferritin relationship. However, using CRP and/or AGP resulted in the expected positive relationship. The best fit model included reported recent fever, AGP and CRP (R(2) = 0.241; P < 0.001). The best fit Hb-ZPP, Hb-TfR, and Hb-EPO models included reported recent fever and AGP but not CRP (R(2) = 0.253, 0.310, and 0.292, respectively; P < 0.001). ZPP, TfR, and EPO were minimally influenced by the APR, whereas ferritin was immensely affected. Reported recent fever alone cannot be used as a marker for the APR. Either AGP or CRP is useful for adjusting if only 1 APP can be measured. However, AGP best predicted the APR in this population
    • …
    corecore