16 research outputs found
Mapping routine measles vaccination in low- and middle-income countries
The safe, highly effective measles vaccine has been recommended globally since 1974, yet in 2017 there were more than 17 million cases of measles and 83,400 deaths in children under 5 years old, and more than 99% of both occurred in low- and middle-income countries (LMICs)1–4. Globally comparable, annual, local estimates of routine first-dose measles-containing vaccine (MCV1) coverage are critical for understanding geographically precise immunity patterns, progress towards the targets of the Global Vaccine Action Plan (GVAP), and high-risk areas amid disruptions to vaccination programmes caused by coronavirus disease 2019 (COVID-19)5–8. Here we generated annual estimates of routine childhood MCV1 coverage at 5 × 5-km2 pixel and second administrative levels from 2000 to 2019 in 101 LMICs, quantified geographical inequality and assessed vaccination status by geographical remoteness. After widespread MCV1 gains from 2000 to 2010, coverage regressed in more than half of the districts between 2010 and 2019, leaving many LMICs far from the GVAP goal of 80% coverage in all districts by 2019. MCV1 coverage was lower in rural than in urban locations, although a larger proportion of unvaccinated children overall lived in urban locations; strategies to provide essential vaccination services should address both geographical contexts. These results provide a tool for decision-makers to strengthen routine MCV1 immunization programmes and provide equitable disease protection for all children
Mapping routine measles vaccination in low- and middle-income countries
The safe, highly effective measles vaccine has been recommended globally since 1974, yet in 2017 there were more than 17 million cases of measles and 83,400 deaths in children under 5 years old, and more than 99% of both occurred in low- and middle-income countries (LMICs)1–4. Globally comparable, annual, local estimates of routine first-dose measles-containing vaccine (MCV1) coverage are critical for understanding geographically precise immunity patterns, progress towards the targets of the Global Vaccine Action Plan (GVAP), and high-risk areas amid disruptions to vaccination programmes caused by coronavirus disease 2019 (COVID-19)5–8. Here we generated annual estimates of routine childhood MCV1 coverage at 5 × 5-km2 pixel and second administrative levels from 2000 to 2019 in 101 LMICs, quantified geographical inequality and assessed vaccination status by geographical remoteness. After widespread MCV1 gains from 2000 to 2010, coverage regressed in more than half of the districts between 2010 and 2019, leaving many LMICs far from the GVAP goal of 80% coverage in all districts by 2019. MCV1 coverage was lower in rural than in urban locations, although a larger proportion of unvaccinated children overall lived in urban locations; strategies to provide essential vaccination services should address both geographical contexts. These results provide a tool for decision-makers to strengthen routine MCV1 immunization programmes and provide equitable disease protection for all children
Predicting the environmental suitability for onchocerciasis in Africa as an aid to elimination planning
Recent evidence suggests that, in some foci, elimination of onchocerciasis from Africa may be feasible with mass drug administration (MDA) of ivermectin. To achieve continental elimination of transmission, mapping surveys will need to be conducted across all implementation units (IUs) for which endemicity status is currently unknown. Using boosted regression tree models with optimised hyperparameter selection, we estimated environmental suitability for onchocerciasis at the 5 × 5-km resolution across Africa. In order to classify IUs that include locations that are environmentally suitable, we used receiver operating characteristic (ROC) analysis to identify an optimal threshold for suitability concordant with locations where onchocerciasis has been previously detected. This threshold value was then used to classify IUs (more suitable or less suitable) based on the location within the IU with the largest mean prediction. Mean estimates of environmental suitability suggest large areas across West and Central Africa, as well as focal areas of East Africa, are suitable for onchocerciasis transmission, consistent with the presence of current control and elimination of transmission efforts. The ROC analysis identified a mean environmental suitability index of 0.71 as a threshold to classify based on the location with the largest mean prediction within the IU. Of the IUs considered for mapping surveys, 50.2% exceed this threshold for suitability in at least one 5×5-km location. The formidable scale of data collection required to map onchocerciasis endemicity across the African continent presents an opportunity to use spatial data to identify areas likely to be suitable for onchocerciasis transmission. National onchocerciasis elimination programmes may wish to consider prioritising these IUs for mapping surveys as human resources, laboratory capacity, and programmatic schedules may constrain survey implementation, and possibly delaying MDA initiation in areas that would ultimately qualify
Mapping disparities in education across low- and middle-income countries
Educational attainment is an important social determinant of maternal, newborn, and child health1–3. As a tool for promoting gender equity, it has gained increasing traction in popular media, international aid strategies, and global agenda-setting4–6. The global health agenda is increasingly focused on evidence of precision public health, which illustrates the subnational distribution of disease and illness7,8; however, an agenda focused on future equity must integrate comparable evidence on the distribution of social determinants of health9–11. Here we expand on the available precision SDG evidence by estimating the subnational distribution of educational attainment, including the proportions of individuals who have completed key levels of schooling, across all low- and middle-income countries from 2000 to 2017. Previous analyses have focused on geographical disparities in average attainment across Africa or for specific countries, but—to our knowledge—no analysis has examined the subnational proportions of individuals who completed specific levels of education across all low- and middle-income countries12–14. By geolocating subnational data for more than 184 million person-years across 528 data sources, we precisely identify inequalities across geography as well as within populations
Mapping child growth failure across low- and middle-income countries
Childhood malnutrition is associated with high morbidity and mortality globally1. Undernourished children are more likely to experience cognitive, physical, and metabolic developmental impairments that can lead to later cardiovascular disease, reduced intellectual ability and school attainment, and reduced economic productivity in adulthood2. Child growth failure (CGF), expressed as stunting, wasting, and underweight in children under five years of age (0–59 months), is a specific subset of undernutrition characterized by insufficient height or weight against age-specific growth reference standards3–5. The prevalence of stunting, wasting, or underweight in children under five is the proportion of children with a height-for-age, weight-for-height, or weight-for-age z-score, respectively, that is more than two standard deviations below the World Health Organization’s median growth reference standards for a healthy population6. Subnational estimates of CGF report substantial heterogeneity within countries, but are available primarily at the first administrative level (for example, states or provinces)7; the uneven geographical distribution of CGF has motivated further calls for assessments that can match the local scale of many public health programmes8. Building from our previous work mapping CGF in Africa9, here we provide the first, to our knowledge, mapped high-spatial-resolution estimates of CGF indicators from 2000 to 2017 across 105 low- and middle-income countries (LMICs), where 99% of affected children live1, aggregated to policy-relevant first and second (for example, districts or counties) administrative-level units and national levels. Despite remarkable declines over the study period, many LMICs remain far from the ambitious World Health Organization Global Nutrition Targets to reduce stunting by 40% and wasting to less than 5% by 2025. Large disparities in prevalence and progress exist across and within countries; our maps identify high-prevalence areas even within nations otherwise succeeding in reducing overall CGF prevalence. By highlighting where the highest-need populations reside, these geospatial estimates can support policy-makers in planning interventions that are adapted locally and in efficiently directing resources towards reducing CGF and its health implications
Additional file 3 of Mapping age- and sex-specific HIV prevalence in adults in sub-Saharan Africa, 2000–2018
Additional file 3: Supplemental figures.Figure S1. Prevalence of male circumcision. Figure S2. Prevalence of signs and symptoms of sexually transmitted infections. Figure S3. Prevalence of marriage or living as married. Figure S4. Prevalence of partner living elsewhere among females. Figure S5. Prevalence of condom use during most recent sexual encounter. Figure S6. Prevalence of sexual activity among young females. Figure S7. Prevalence of multiple partners among males in the past year. Figure S8. Prevalence of multiple partners among females in the past year. Figure S9. HIV prevalence predictions from the boosted regression tree model. Figure S10. HIV prevalence predictions from the generalized additive model. Figure S11. HIV prevalence predictions from the lasso regression model. Figure S12. Modeling regions. Figure S13. Age- and sex-specific vs. adult prevalence modeling. Figure S14. Data sensitivity. Figure S15. Model specification validation. Figure S16. Modeled and re-aggregated adult prevalence comparison. Figure S17. HIV prevalence raking factors for males. Figure S18. HIV prevalence raking factors for females. Figure S19. Age-specific HIV prevalence in males, 2000. Figure S20. Age-specific HIV prevalence in females, 2000. Figure S21. Age-specific HIV prevalence in males, 2005. Figure S22. Age-specific HIV prevalence in females, 2005. Figure S23. Age-specific HIV prevalence in males, 2010. Figure S24. Age-specific HIV prevalence in females, 2010. Figure S25. Age-specific HIV prevalence in males, 2018. Figure S26. Age-specific HIV prevalence in females, 2018. Figure S27. Age-specific uncertainty interval range estimates in males, 2000. Figure S28. Age-specific uncertainty interval range estimates in females, 2000. Figure S29. Age-specific uncertainty interval range estimates in males, 2005. Figure S30. Age-specific uncertainty interval range estimates in females, 2005. Figure S31. Age-specific uncertainty interval range estimates in males, 2010. Figure S32. Age-specific uncertainty interval range estimates in females, 2010. Figure S33. Age-specific uncertainty interval range estimates in males, 2018. Figure S34. Age-specific uncertainty interval range estimates in females, 2018. Figure S35. Change in HIV prevalence in males, 2000-2005. Figure S36. Change in HIV prevalence in females, 2000-2005. Figure S37. Change in HIV prevalence in males, 2005-2010. Figure S38. Change in HIV prevalence in females, 2005-2010. Figure S39. Change in HIV prevalence in males, 2010-2018. Figure S40. Change in HIV prevalence in females, 2010-2018. Figure S41. Space mesh for geostatistical models
Additional file 1 of Mapping age- and sex-specific HIV prevalence in adults in sub-Saharan Africa, 2000–2018
Additional file 1: Supplemental information.1. Compliance with the Guidlines for Accurate and Transparent Health Estimates Reporting (GATHER). 2. HIV data sources and data processing. 3. Covariate and auxiliary data. 4. Statistical model. 5. References
Additional file 4 of Mapping age- and sex-specific HIV prevalence in adults in sub-Saharan Africa, 2000–2018
Additional file 4: Supplemental results.1. README. 2. Prevalence range across districts. 3. Prevalence range between sexes. 4. Prevalence range between ages. 5. Age-specific district ranges
Global, regional, and national mortality among young people aged 10-24 years, 1950-2019: a systematic analysis for the Global Burden of Disease Study 2019
Background: Documentation of patterns and long-term trends in mortality in young people, which reflect huge changes in demographic and social determinants of adolescent health, enables identification of global investment priorities for this age group. We aimed to analyse data on the number of deaths, years of life lost, and mortality rates by sex and age group in people aged 10–24 years in 204 countries and territories from 1950 to 2019 by use of estimates from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019. Methods: We report trends in estimated total numbers of deaths and mortality rate per 100 000 population in young people aged 10–24 years by age group (10–14 years, 15–19 years, and 20–24 years) and sex in 204 countries and territories between 1950 and 2019 for all causes, and between 1980 and 2019 by cause of death. We analyse variation in outcomes by region, age group, and sex, and compare annual rate of change in mortality in young people aged 10–24 years with that in children aged 0–9 years from 1990 to 2019. We then analyse the association between mortality in people aged 10–24 years and socioeconomic development using the GBD Socio-demographic Index (SDI), a composite measure based on average national educational attainment in people older than 15 years, total fertility rate in people younger than 25 years, and income per capita. We assess the association between SDI and all-cause mortality in 2019, and analyse the ratio of observed to expected mortality by SDI using the most recent available data release (2017). Findings: In 2019 there were 1·49 million deaths (95% uncertainty interval 1·39–1·59) worldwide in people aged 10–24 years, of which 61% occurred in males. 32·7% of all adolescent deaths were due to transport injuries, unintentional injuries, or interpersonal violence and conflict; 32·1% were due to communicable, nutritional, or maternal causes; 27·0% were due to non-communicable diseases; and 8·2% were due to self-harm. Since 1950, deaths in this age group decreased by 30·0% in females and 15·3% in males, and sex-based differences in mortality rate have widened in most regions of the world. Geographical variation has also increased, particularly in people aged 10–14 years. Since 1980, communicable and maternal causes of death have decreased sharply as a proportion of total deaths in most GBD super-regions, but remain some of the most common causes in sub-Saharan Africa and south Asia, where more than half of all adolescent deaths occur. Annual percentage decrease in all-cause mortality rate since 1990 in adolescents aged 15–19 years was 1·3% in males and 1·6% in females, almost half that of males aged 1–4 years (2·4%), and around a third less than in females aged 1–4 years (2·5%). The proportion of global deaths in people aged 0–24 years that occurred in people aged 10–24 years more than doubled between 1950 and 2019, from 9·5% to 21·6%. Interpretation: Variation in adolescent mortality between countries and by sex is widening, driven by poor progress in reducing deaths in males and older adolescents. Improving global adolescent mortality will require action to address the specific vulnerabilities of this age group, which are being overlooked. Furthermore, indirect effects of the COVID-19 pandemic are likely to jeopardise efforts to improve health outcomes including mortality in young people aged 10–24 years. There is an urgent need to respond to the changing global burden of adolescent mortality, address inequities where they occur, and improve the availability and quality of primary mortality data in this age group. Funding: Bill & Melinda Gates Foundation
