135 research outputs found

    El Potencial terapèutic dels cannabinoides

    Get PDF

    Cannabinoids for treatment of Alzheimer’s disease: moving toward the clinic

    Get PDF
    The limited effectiveness of current therapies against Alzheimer’s disease (AD) highlights the need for intensifying research efforts devoted to developing new agents for preventing or retarding the disease process. During the last few years, targeting the endogenous cannabinoid system has emerged as a potential therapeutic approach to treat Alzheimer. The endocannabinoid system is composed by a number of cannabinoid receptors, including the well-characterized CB(1) and CB(2) receptors, with their endogenous ligands and the enzymes related to the synthesis and degradation of these endocannabinoid compounds. Several findings indicate that the activation of both CB(1) and CB(2) receptors by natural or synthetic agonists, at non-psychoactive doses, have beneficial effects in Alzheimer experimental models by reducing the harmful β-amyloid peptide action and tau phosphorylation, as well as by promoting the brain’s intrinsic repair mechanisms. Moreover, endocannabinoid signaling has been demonstrated to modulate numerous concomitant pathological processes, including neuroinflammation, excitotoxicity, mitochondrial dysfunction, and oxidative stress. The present paper summarizes the main experimental studies demonstrating the polyvalent properties of cannabinoid compounds for the treatment of AD, which together encourage progress toward a clinical trial

    Delineating the efficacy of a cannabis-based medicine at advanced stages of dementia in a murine model

    Get PDF
    Previous reports have demonstrated that the combination of Δ9-tetrahydrocannabinol (Δ9-THC) and cannabidiol (CBD) botanical extracts, which are the components of an already approved cannabis-based medicine, reduce the Alzheimer-like phenotype of AβPP/PS1 transgenic mice when chronically administered during the early symptomatic stage. Here, we provide evidence that such natural cannabinoids are still effective in reducing memory impairment in AβPP/PS1 mice at advanced stages of the disease but are not effective in modifying the Aβ processing or in reducing the glial reactivity associated with aberrant Aβ deposition as occurs when administered at early stages of the disease. The present study also demonstrates that natural cannabinoids do not affect cognitive impairment associated with healthy aging in wild-type mice. The positive effects induced by Δ9-THC and CBD in aged AβPP/PS1 mice are associated with reduced GluR2/3 and increased levels of GABA-A Rα1 in cannabinoid-treated animals when compared with animals treated with vehicle alone

    Genetic deletion of CB1 cannabinoid receptors exacerbates the Alzheimer-like symptoms in a transgenic animal model

    Get PDF
    Activating CB1 cannabinoid receptor has been demonstrated to produce certain therapeutic effects in animal models of Alzheimer's disease (AD). In this study, we evaluated the specific contribution of CB1 receptor to the progression of AD-like pathology in double transgenic APP/PS1 mice. A new mouse strain was generated by crossing APP/PS1 transgenic mice with CB1 knockout mice. Genetic deletion of CB1 drastically reduced the survival of APP/PS1 mice. In spite that CB1 mutant mice bearing the APP/PS1 transgene developed normally, they suddenly died within the first two months of life likely due to spontaneous seizures. This increased mortality could be related to an imbalance in the excitatory/inhibitory transmission in the hippocampus as suggested by the reduced density of inhibitory parvalbumin positive neurons observed in APP/PS1 mice lacking CB1 receptor at 7 weeks of age. We also evaluated the AD-like phenotype of APP/PS1 mice heterozygous for the CB1 deletion at 3 and 6 months of age. The memory impairment associated to APP/PS1 transgene was accelerated in these mice. Neither the soluble levels of Aβ or the density of Aβ plaques were modified in APP/PS1 mice heterozygous for CB1 deletion at any age. However, the reduction in CB1 receptor expression decreased the levels of PSD-95 protein in APP/PS1 mice, suggesting a synaptic dysfunction in these animals that could account for the acceleration of the memory impairment observed. In summary, our results suggest a crucial role for CB1 receptor in the progression of AD-related pathological events

    CB2 Cannabinoid Receptor Agonist Ameliorates Alzheimer-Like Phenotype in AβPP/PS1 Mice

    Get PDF
    The specific CB2 cannabinoid receptor agonist JWH-133 induced cognitive improvement in double AβPP/PS1 transgenic mice, a genetic model of Alzheimer's disease. This effect was more pronounced when administered at the pre-symptomatic rather than the early symptomatic stage. The cognitive improvement was associated with decreased microglial reactivity and reduced expression of pro-inflammatory cytokines IL-1β, IL-6, TNFα, and IFNγ. In addition, JWH-133 reduced the expression of active p38 and SAPK/JNK, increased the expression of inactive GSK3β, and lowered tau hyperphosphorylation at Thr181 in the vicinity of amyloid-β plaques. Moreover, JWH-133 produced a decrease in the expression of hydroxynonenal adducts, and enhanced the expression of SOD1 and SOD2 around plaques. In contrast, the chronic treatment with JWH-133 failed to modify the amyloid-β production or deposition in cortex and hippocampus. In conclusion, the present study lends support to the idea that stimulation of CB2 receptors ameliorates several altered parameters in Alzheimer's disease such as impaired memory and learning, neuroinflammation, oxidative stress damage and oxidative stress responses, selected tau kinases, and tau hyperphosphorylation around plaques

    CB2 cannabinoid receptor as potential target against alzheimer's disease

    Get PDF
    The CB2 receptor is one of the components of the endogenous cannabinoid system, a complex network of signaling molecules and receptors involved in the homeostatic control of several physiological functions. Accumulated evidence suggests a role for CB2 receptors in Alzheimer's disease (AD) and indicates their potential as a therapeutic target against this neurodegenerative disease. Levels of CB2 receptors are significantly increased in post-mortem AD brains, mainly in microglia surrounding senile plaques, and their expression levels correlate with the amounts of Aβ42 and β-amyloid plaque deposition. Moreover, several studies on animal models of AD have demonstrated that specific CB2 receptor agonists, which are devoid of psychoactive effects, reduce AD-like pathology, resulting in attenuation of the inflammation associated with the disease but also modulating Aβ and tau aberrant processing, among other effects. CB2 receptor activation also improves cognitive impairment in animal models of AD. This review discusses available data regarding the role of CB2 receptors in AD and the potential usefulness of specific agonists of these receptors against AD

    Cannabinoids for treatment of Alzheimer’s disease: moving toward the clinic

    Get PDF
    The limited effectiveness of current therapies against Alzheimer's disease (AD) highlights the need for intensifying research efforts devoted to developing new agents for preventing or retarding the disease process. During the last few years, targeting the endogenous cannabinoid system has emerged as a potential therapeutic approach to treat Alzheimer. The endocannabinoid system is composed by a number of cannabinoid receptors, including the well-characterized CB1 and CB2 receptors, with their endogenous ligands and the enzymes related to the synthesis and degradation of these endocannabinoid compounds. Several findings indicate that the activation of both CB1 and CB2 receptors by natural or synthetic agonists, at non-psychoactive doses, have beneficial effects in Alzheimer experimental models by reducing the harmful β-amyloid peptide action and tau phosphorylation, as well as by promoting the brain's intrinsic repair mechanisms. Moreover, endocannabinoid signaling has been demonstrated to modulate numerous concomitant pathological processes, including neuroinflammation, excitotoxicity, mitochondrial dysfunction, and oxidative stress. The present paper summarizes the main experimental studies demonstrating the polyvalent properties of cannabinoid compounds for the treatment of AD, which together encourage progress toward a clinical trial

    Fibrinogen-Derived γ377-395 Peptide Improves Cognitive Performance and Reduces Amyloid-β Deposition, without Altering Inflammation, in AβPP/PS1 Mice

    Get PDF
    Fibrinogen has emerged as a promising therapeutic target against Alzheimer's disease because of its dual role in altered vascular function and amyloid-β aggregation. Here we provide evidence regarding cognitive improvement and reduction of brain parenchyma amyloid-β deposition in AβPP/PS1 mice after treatment for one month with the fibrinogen-blocking peptide Fibγ377-395. No alteration in glial response or other neuroinflammatory markers was observed in the cortex of treated animals. Considering these results and the fact that Fibγ377-395 does not affect coagulation function, this peptide could be considered as a promising and safe candidate for chronic treatment of Alzheimer's disease

    Amyotrophic lateral sclerosis, gene deregulation in the anterior horn of the spinal cord and frontal cortex area 8: implications in frontotemporal lobar degeneration

    Get PDF
    Transcriptome arrays identifies 747 genes differentially expressed in the anterior horn of the spinal cord and 2,300 genes differentially expressed in frontal cortex area 8 in a single group of typical sALS cases without frontotemporal dementia compared with age-matched controls. Main up-regulated clusters in the anterior horn are related to inflammation and apoptosis; down-regulated clusters are linked to axoneme structures and protein synthesis. In contrast, up-regulated gene clusters in frontal cortex area 8 involve neurotransmission, synaptic proteins and vesicle trafficking, whereas main down-regulated genes cluster into oligodendrocyte function and myelin-related proteins. RT-qPCR validates the expression of 58 of 66 assessed genes from different clusters. The present results: a. reveal regional differences in de-regulated gene expression between the anterior horn of the spinal cord and frontal cortex area 8 in the same individuals suffering from sALS; b. validate and extend our knowledge about the complexity of the inflammatory response in the anterior horn of the spinal cord; and c. identify for the first time extensive gene up-regulation of neurotransmission and synaptic-related genes, together with significant down-regulation of oligodendrocyte-and myelin-related genes, as important contributors to the pathogenesis of frontal cortex alterations in the sALS/frontotemporal lobar degeneration spectrum complex at stages with no apparent cognitive impairment
    • …
    corecore