4 research outputs found

    A Comparison of the Composition of Planets in Single- and Multi-Planet Systems Orbiting M dwarfs

    Full text link
    We investigate and compare the composition of M-dwarf planets in systems with only one known planet (``singles") to those residing in multi-planet systems (``multis") and the fundamental properties of their host stars. We restrict our analysis to planets with directly measured masses and radii, which comprise a total of 70 planets: 30 singles and 40 multis in 19 systems. We compare the bulk densities for the full sample, which includes planets ranging in size from 0.52R0.52 R_{\oplus} to 12.8R12.8R_\oplus, and find that single planets have significantly lower densities on average than multis, which we cannot attribute to selection biases. We compare the bulk densities normalized by an Earth model for planets with Rp<6RR_{p} < 6R_{\oplus}, and find that multis are also denser with 99\% confidence. We calculate and compare the core/water mass fractions (CMF/WMF) of low-mass planets (Mp<10MM_p <10 M_{\oplus}), and find that the likely rocky multis (with Rp<1.6RR_p <1.6 R_{\oplus}) have lower CMFs than singles. We also compare the [Fe/H] metallicity and rotation period of all single versus multi-planet host stars with such measurements in the literature and find that multi-planet hosts are significantly more metal-poor than those hosting a single planet. Moreover, we find that host star metallicity decreases with increasing planet multiplicity. In contrast, we find only a modest difference in the rotation period. The significant differences in planetary composition and metallicity of the host stars point to different physical processes governing the formation of single- and multi-planet systems in M dwarfs.Comment: 20 pages, 11 figures, 2 tables. Submitted to ApJ and under review. Comments welcome

    Retrieving the C and O Abundances of HR 7672~AB: a Solar-Type Primary Star with a Benchmark Brown Dwarf

    Full text link
    A benchmark brown dwarf (BD) is a BD whose properties (e.g., mass and chemical composition) are precisely and independently measured. Benchmark BDs are valuable in testing theoretical evolutionary tracks, spectral synthesis, and atmospheric retrievals for sub-stellar objects. Here, we report results of atmospheric retrieval on a synthetic spectrum and a benchmark BD -- HR 7672~B -- with \petit. First, we test the retrieval framework on a synthetic PHOENIX BT-Settl spectrum with a solar composition. We show that the retrieved C and O abundances are consistent with solar values, but the retrieved C/O is overestimated by 0.13-0.18, which is \sim4 times higher than the formal error bar. Second, we perform retrieval on HR 7672~B using high spectral resolution data (R=35,000) from the Keck Planet Imager and Characterizer (KPIC) and near infrared photometry. We retrieve [C/H], [O/H], and C/O to be 0.24±0.05-0.24\pm0.05, 0.19±0.04-0.19\pm0.04, and 0.52±0.020.52\pm0.02. These values are consistent with those of HR 7672~A within 1.5-σ\sigma. As such, HR 7672~B is among only a few benchmark BDs (along with Gl 570~D and HD 3651~B) that have been demonstrated to have consistent elemental abundances with their primary stars. Our work provides a practical procedure of testing and performing atmospheric retrieval, and sheds light on potential systematics of future retrievals using high- and low-resolution data.Comment: 29 pages, 17 figures, 5 tables, resubmitted to AAS journals after first revisio

    A Reanalysis of the Composition of K2-106b: An Ultra-short-period Super-Mercury Candidate

    No full text
    We present a reanalysis of the K2-106 transiting planetary system, with a focus on the composition of K2-106b, an ultra-short-period, super-Mercury candidate. We globally model existing photometric and radial velocity data and derive a planetary mass and radius for K2-106b of M _p = 8.53 ± 1.02 M _⊕ and Rp=1.710.057+0.069R{R}_{p}={1.71}_{-0.057}^{+0.069}\,{R}_{\oplus } , which leads to a density of ρp=9.41.5+1.6{\rho }_{p}={9.4}_{-1.5}^{+1.6} g cm ^−3 , a significantly lower value than previously reported in the literature. We use planet interior models that assume a two-layer planet comprised of a liquid, pure Fe core and an iron-free, MgSiO _3 mantle, and we determine that the range of the core mass fractions are consistent with the observed mass and radius. We use existing high-resolution spectra of the host star to derive the Fe/Mg/Si abundances ([Fe/H] = −0.03 ± 0.01, [Mg/H] = 0.04 ± 0.02, [Si/H] = 0.03 ± 0.06) to infer the composition of K2-106b. We find that K2-106b has a density and core mass fraction ( 4415+12%{44}_{-15}^{+12} \% ) consistent with that of Earth (CMF _⊕ = 32%). Furthermore, its composition is consistent with what is expected, assuming that it reflects the relative refractory abundances of its host star. K2-106b is therefore unlikely to be a super-Mercury, as has been suggested in previous literature

    The PEPSI-LBT Exoplanet Transit Survey (PETS). II. A Deep Search for Thermal Inversion Agents in KELT-20 b/MASCARA-2 b with Emission and Transmission Spectroscopy

    Full text link
    Recent observations have shown that the atmospheres of ultra hot Jupiters (UHJs) commonly possess temperature inversions, where the temperature increases with increasing altitude. Nonetheless, which opacity sources are responsible for the presence of these inversions remains largely observationally unconstrained. We used LBT/PEPSI to observe the atmosphere of the UHJ KELT-20 b in both transmission and emission in order to search for molecular agents which could be responsible for the temperature inversion. We validate our methodology by confirming a previous detection of Fe I in emission at 15.1σ15.1\sigma; however, we are unable to reproduce published detections of Fe II, Cr I, or Si I. We attribute the non-detection of Si I to the lack of lines in our bandpass, but the non-detections of Fe II and Cr I are puzzling due to our much higher signal-to-noise ratio than previous works. Our search for the inversion agents TiO, VO, FeH, and CaH results in non-detections. Using injection-recovery testing we set 4σ4\sigma upper limits upon the volume mixing ratios for these constituents as low as 1×1010\sim1\times10^{-10} for TiO. For TiO, VO, and CaH, our limits are much lower than expectations from an equilibrium chemical model, while FeH is lower than the expectations only from a super-Solar metallicity model. We thus rule out TiO, VO, and CaH as the source of the temperature inversion in KELT-20 b, while FeH is disfavored only if KELT-20 b possesses a high-metallicity atmosphere.Comment: 17 pages, 11 figures. Submitted to AAS Journal
    corecore