182 research outputs found

    Analyticity Properties of Graham-Witten Anomalies

    Full text link
    Analytic properties of Graham-Witten anomalies are considered. Weyl anomalies according to their analytic properties are of type A (coming from δ\delta-singularities in correlators of several energy-momentum tensors) or of type B (originating in counterterms which depend logarithmically on a mass scale). It is argued that all Graham-Witten anomalies can be divided into 2 groups: internal and external, and that all external anomalies are of type B, whereas among internal anomalies there is one term of type A and all the rest are of type B. This argument is checked explicitly for the case of a free scalar field in a 6-dimensional space with a 2-dimensional submanifold.Comment: 2 typos correcte

    Dynamical vs. Auxiliary Fields in Gravitational Waves around a Black Hole

    Full text link
    The auxiliary/dynamic decoupling method of hep-th/0609001 applies to perturbations of any co-homogeneity 1 background (such as a spherically symmetric space-time or a homogeneous cosmology). Here it is applied to compute the perturbations around a Schwarzschild black hole in an arbitrary dimension. The method provides a clear insight for the existence of master equations. The computation is straightforward, coincides with previous results of Regge-Wheeler, Zerilli and Kodama-Ishibashi but does not require any ingenuity in either the definition of variables or in fixing the gauge. We note that the method's emergent master fields are canonically conjugate to the standard ones. In addition, our action approach yields the auxiliary sectors.Comment: 26 page

    High and Low Dimensions in The Black Hole Negative Mode

    Full text link
    The negative mode of the Schwarzschild black hole is central to Euclidean quantum gravity around hot flat space and for the Gregory-Laflamme black string instability. We analyze the eigenvalue as a function of space-time dimension by constructing two perturbative expansions: one for large d and the other for small d-3, and determining as many coefficients as we are able to compute analytically. Joining the two expansions we obtain an interpolating rational function accurate to better than 2% through the whole range of dimensions including d=4.Comment: 17 pages, 4 figures. v2: added reference. v3: published versio

    Analytic Evidence for Continuous Self Similarity of the Critical Merger Solution

    Full text link
    The double cone, a cone over a product of a pair of spheres, is known to play a role in the black-hole black-string phase diagram, and like all cones it is continuously self similar (CSS). Its zero modes spectrum (in a certain sector) is determined in detail, and it implies that the double cone is a co-dimension 1 attractor in the space of those perturbations which are smooth at the tip. This is interpreted as strong evidence for the double cone being the critical merger solution. For the non-symmetry-breaking perturbations we proceed to perform a fully non-linear analysis of the dynamical system. The scaling symmetry is used to reduce the dynamical system from a 3d phase space to 2d, and obtain the qualitative form of the phase space, including a non-perturbative confirmation of the existence of the "smoothed cone".Comment: 25 pages, 4 figure

    Biexciton oscillator strength

    Full text link
    Our goal is to provide a physical understanding of the elementary coupling between photon and biexciton and to derive the physical characteristics of the biexciton oscillator strength, following the procedure we used for trion. Instead of the more standard two-photon absorption, this work concentrates on molecular biexciton created by photon absorption in an exciton gas. We first determine the appropriate set of coordinates in real and momentum spaces to describe one biexciton as two interacting excitons. We then turn to second quantization and introduce the "Fourier transform in the exciton sense" of the biexciton wave function which is the relevant quantity for oscillator strength. We find that, like for trion, the oscillator strength for the formation of one biexciton out of one photon plus a \emph{single} exciton is extremely small: it is one biexciton volume divided by one sample volume smaller than the exciton oscillator strength. However, due to their quantum nature, trion and biexciton have absorption lines which behave quite differently. Electrons and trions are fermionic particles impossible to pile up all at the same energy. This would make the weak trion line spread with electron density, the peak structure only coming from singular many-body effects. By contrast, the bosonic nature of exciton and biexciton makes the biexciton peak mainly rise with exciton density, this rise being simply linear if we forget many-body effects between the photocreated exciton and the excitons present in the sample

    Auger Spectroscopy of Hydrogenated Diamond Surfaces

    Get PDF
    An energy shift and a change of the line shape of the carbon core-valence-valence Auger spectra are observed for diamond surfaces after their exposure to an electron beam, or annealing at temperatures higher then 950 C. The effect is studied for both natural diamond crystals and chemical-vapor-deposited diamond films. A theoretical model is proposed for Auger spectra of hydrogenated diamond surfaces. The observed changes of the carbon Auger line shape are shown to be related to the redistribution of the valence-band local density of states caused by the hydrogen desorption from the surface. One-electron calculation of Auger spectra of diamond surfaces with various hydrogen coverages are presented. They are based on self-consistent wave functions and matrix elements calculated in the framework of the local-density approximation and the self-consistent linear muffin-tin orbital method with static core-hole effects taken into account. The major features of experimental spectra are explained
    corecore