295 research outputs found

    Radiative production of invisible charginos in photon photon collision

    Get PDF
    If in a supersymmetric model, the lightest chargino is nearly degenerate with the lightest neutralino, the former can decay into the latter alongwith a soft pion (or a lepton-neutrino pair). Near degeneracy of the chargino and neutralino masses can cause the other decay products (the pion or the lepton) to be almost invisible. Photon-photon colliders offer a possibility of clean detection of such an event through a hard photon tag.Comment: 12 pages, 5 postscript figure

    Constraints on charged Higgs bosons from D(s)+- -> mu+- nu and D(s)+- -> tau+- nu

    Full text link
    The decays D(s)+- -> mu+- nu and D(s)+- -> tau+- nu have traditionally been used to measure the D(s)+- meson decay constant f_D(s). Recent measurements at CLEO-c and the B factories suggest a branching ratio for both decays somewhat higher than the Standard Model prediction using f_D(s) from unquenched lattice calculations. The charged Higgs boson (H+-) in the Two Higgs Doublet Model (Type II) would also mediate these decays, but any sizeable contribution from H+- can only suppress the branching ratios and consequently is now slightly disfavoured. It is shown that constraints on the parameters tan(beta) and m_H+- from such decays can be competitive with and complementary to analogous constraints derived from the leptonic meson decays B+- -> tau+- nu_tau and K+- -> mu+- nu_mu, especially if lattice calculations eventually prefer f_D(s) < 250 MeV.Comment: 18 pages, 4 figure

    New determination of the D0→K−π+π0 and D0→K−π+π+π− coherence factors and average strong-phase differences

    Get PDF
    AbstractMeasurements of the coherence factors (RKππ0 and RK3π) and the average strong-phase differences (δDKππ0 and δDK3π) for the decays D0→K−π+π0 and D0→K−π+π+π− are presented. These parameters are important inputs to the determination of the unitarity triangle angle γ in B∓→DK∓ decays, where D designates a D0 or D¯0 meson decaying to a common final state. The measurements are made using quantum correlated DD¯ decays collected by the CLEO-c experiment at the ψ(3770) resonance, and augment a previously published analysis by the inclusion of new events in which the signal decay is tagged by the mode D→KS0π+π−. The measurements also benefit from improved knowledge of external inputs, namely the D0D¯0 mixing parameters, rDKπ and several D-meson branching fractions. The measured values are RKππ0=0.82±0.07, δDKππ0=(164−14+20)°, RK3π=0.32−0.28+0.20 and δDK3π=(225−78+21)°. Consideration is given to how these measurements can be improved further by using the larger quantum-correlated data set collected by BESIII

    Searching for the light dark gauge boson in GeV-scale experiments

    Full text link
    We study current constraints and search prospects for a GeV scale vector boson at a range of low energy experiments. It couples to the Standard Model charged particles with a strength <= 10^-3 to 10^-4 of that of the photon. The possibility of such a particle mediating dark matter self-interactions has received much attention recently. We consider searches at low energy high luminosity colliders, meson decays, and fixed target experiments. Based on available data, searches both at colliders and in meson decays can discover or exclude such a scenario if the coupling strength is on the larger side. We emphasize that a dedicated fixed target experiment has a much better potential in searching for such a gauge boson, and outline the desired properties of such an experiment. Two different optimal designs should be implemented to cover the range of coupling strength 10^-3 to 10^-5, and < 10^-5 of the photon, respectively. We also briefly comment on other possible ways of searching for such a gauge boson.Comment: 33 pages, 5 figures; v2: corrected discussion of Upsilon decays, updates to discussion of fixed-target experiments and QED constraints, numerous minor changes, references added; v3: typo corrected relative to the JHEP published versio

    Search for Top Quark FCNC Couplings in Z' Models at the LHC and CLIC

    Full text link
    The top quark is the heaviest particle to date discovered, with a mass close to the electroweak symmetry breaking scale. It is expected that the top quark would be sensitive to the new physics at the TeV scale. One of the most important aspects of the top quark physics can be the investigation of the possible anomalous couplings. Here, we study the top quark flavor changing neutral current (FCNC) couplings via the extra gauge boson Z' at the Large Hadron Collider (LHC) and the Compact Linear Collider (CLIC) energies. We calculate the total cross sections for the signal and the corresponding Standard Model (SM) background processes. For an FCNC mixing parameter x=0.2 and the sequential Z' mass of 1 TeV, we find the single top quark FCNC production cross sections 0.38(1.76) fb at the LHC with sqrt{s_{pp}}=7(14) TeV, respectively. For the resonance production of sequential Z' boson and decays to single top quark at the Compact Linear Collider (CLIC) energies, including the initial state radiation and beamstrahlung effects, we find the cross section 27.96(0.91) fb at sqrt{s_{e^{+}e^{-}}}=1(3) TeV, respectively. We make the analysis to investigate the parameter space (mixing-mass) through various Z' models. It is shown that the results benefit from the flavor tagging.Comment: 20 pages, 17 figures, 6 table

    Measuring the Relative Strong Phase in D0K+KD^0 \to K^{*+} K^- and D0KK+D^0 \to K^{*-} K^+ Decays

    Full text link
    In a recently suggested method for measuring the weak phase γ\gamma in B±K±(KK)DB^\pm \to K^\pm (KK^*)_D decays, the relative strong phase δD\delta_D in D0K+KD^0 \to K^{*+} K^- and D0KK+D^0 \to K^{*-} K^+ decays (equivalently, in D0K+KD^0 \to K^{*+} K^- and \od \to K^{*+} K^-) plays a role. It is shown how a study of the Dalitz plot in D0K+Kπ0D^0 \to K^+ K^- \pi^0 can yield information on this phase, and the size of the data sample which would give a useful measurement is estimated.Comment: 13 pages, latex, 5 figures, submitted to Phys. Rev. D. Appendix and some text on additional resonant contributions adde

    Photon polarization in radiative B decays

    Full text link
    We study decay distributions in B -> K pi pi gamma, combining contributions from several overlapping resonances in a K pi pi mass range near 1400 MeV, (1^+) K_1(1400), (2^+) K^*_2(1430) and (1^-) K^*(1410). A method is proposed for using these distributions to determine a photon polarization parameter in the effective radiative weak Hamiltonian. This parameter is measured through an up-down asymmetry of the photon direction relative to the K pi pi decay plane. We calculate a dominant up-down asymmetry of 0.33 +- 0.05 from the K1(1400) resonance, which can be measured with about 10^8 B B-bar pairs, thus providing a new test for the Standard Model and a probe for some of its extensions.Comment: 22 pages, 3 figures, version to appear in Phys. Rev.

    K -> pi pi and a light scalar meson

    Get PDF
    We explore the Delta-I= 1/2 rule and epsilon'/epsilon in K -> pi pi transitions using a Dyson-Schwinger equation model. Exploiting the feature that QCD penguin operators direct K^0_S transitions through 0^{++} intermediate states, we find an explanation of the enhancement of I=0 K -> pi pi transitions in the contribution of a light sigma-meson. This mechanism also affects epsilon'/epsilon.Comment: 7 pages, REVTE

    Charming penguin contributions to charmless B decays into two pseudoscalar mesons

    Get PDF
    We present estimates of the charming penguin contribution to B => K pi, pi pi,K eta, K eta' decays due to intermediate charmed meson states. We find that this contribution is indeed significant for B => K pi decays, and its inclusion, together with the tree and penguin terms, produces large branching ratios in agreement with data, though the analysis is affected by large theoretical uncertainties. On the other hand, for B => pi pi, K eta, K eta' decays, the effect of the charming penguin contribution is more modest. We also compute CP asymmetries for B => K pi, pi pi decays and we obtain rather large results.Comment: 12 pages, 4 figures, LaTeX2e with epsfig. Minor changes in the text, this version will appear in Phys. Rev.

    Heavy quarkonium 2S states in light-front quark model

    Full text link
    We study the charmonium 2S states ψ\psi' and ηc\eta_c', and the bottomonium 2S states Υ\Upsilon' and ηb\eta_b', using the light-front quark model and the 2S state wave function of harmonic oscillator as the approximation of the 2S quarkonium wave function. The decay constants, transition form factors and masses of these mesons are calculated and compared with experimental data. Predictions of quantities such as Br(ψγηc)(\psi' \to \gamma \eta_c') are made. The 2S wave function may help us learn more about the structure of these heavy quarkonia.Comment: 5 latex pages, final version for journal publicatio
    corecore