6 research outputs found

    The max-plus finite element method for optimal control problems: further approximation results

    Full text link
    We develop the max-plus finite element method to solve finite horizon deterministic optimal control problems. This method, that we introduced in a previous work, relies on a max-plus variational formulation, and exploits the properties of projectors on max-plus semimodules. We prove here a convergence result, in arbitrary dimension, showing that for a subclass of problems, the error estimate is of order δ+Δx(δ)1\delta+\Delta x(\delta)^{-1}, where δ\delta and Δx\Delta x are the time and space steps respectively. We also show how the max-plus analogues of the mass and stiffness matrices can be computed by convex optimization, even when the global problem is non convex. We illustrate the method by numerical examples in dimension 2.Comment: 13 pages, 2 figure

    A max-plus finite element method for solving finite horizon deterministic optimal control problems

    Get PDF
    We introduce a max-plus analogue of the Petrov-Galerkin finite element method, to solve finite horizon deterministic optimal control problems. The method relies on a max-plus variational formulation, and exploits the properties of projectors on max-plus semimodules. We obtain a nonlinear discretized semigroup, corresponding to a zero-sum two players game. We give an error estimate of order (Δt)1/2+Δx(Δt)1(\Delta t)^{1/2}+\Delta x(\Delta t)^{-1}, for a subclass of problems in dimension 1. We compare our method with a max-plus based discretization method previously introduced by Fleming and McEneaney.Comment: 13 pages, 5 figure

    The max-plus finite element method for solving deterministic optimal control problems: basic properties and convergence analysis

    Get PDF
    We introduce a max-plus analogue of the Petrov-Galerkin finite element method to solve finite horizon deterministic optimal control problems. The method relies on a max-plus variational formulation. We show that the error in the sup norm can be bounded from the difference between the value function and its projections on max-plus and min-plus semimodules, when the max-plus analogue of the stiffness matrix is exactly known. In general, the stiffness matrix must be approximated: this requires approximating the operation of the Lax-Oleinik semigroup on finite elements. We consider two approximations relying on the Hamiltonian. We derive a convergence result, in arbitrary dimension, showing that for a class of problems, the error estimate is of order δ+Δx(δ)1\delta+\Delta x(\delta)^{-1} or δ+Δx(δ)1\sqrt{\delta}+\Delta x(\delta)^{-1}, depending on the choice of the approximation, where δ\delta and Δx\Delta x are respectively the time and space discretization steps. We compare our method with another max-plus based discretization method previously introduced by Fleming and McEneaney. We give numerical examples in dimension 1 and 2.Comment: 31 pages, 11 figure

    Méthode des éléments finis max-plus pour la résolution numérique de problèmes de commande optimale déterministe

    No full text
    PARIS-BIUSJ-Thèses (751052125) / SudocPARIS-BIUSJ-Physique recherche (751052113) / SudocSudocFranceF
    corecore