We introduce a max-plus analogue of the Petrov-Galerkin finite element method
to solve finite horizon deterministic optimal control problems. The method
relies on a max-plus variational formulation. We show that the error in the sup
norm can be bounded from the difference between the value function and its
projections on max-plus and min-plus semimodules, when the max-plus analogue of
the stiffness matrix is exactly known. In general, the stiffness matrix must be
approximated: this requires approximating the operation of the Lax-Oleinik
semigroup on finite elements. We consider two approximations relying on the
Hamiltonian. We derive a convergence result, in arbitrary dimension, showing
that for a class of problems, the error estimate is of order δ+Δx(δ)−1 or δ+Δx(δ)−1, depending on the
choice of the approximation, where δ and Δx are respectively the
time and space discretization steps. We compare our method with another
max-plus based discretization method previously introduced by Fleming and
McEneaney. We give numerical examples in dimension 1 and 2.Comment: 31 pages, 11 figure