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Une méthode des éléments finis max-plus pour la
résolution de problémes de commande optimale
déterministe en horizon fini

Résumé : Nous introduisons I’analogue max-plus de la méthode des éléments finis de
Petrov-Galerkin pour résoudre des problémes de commande optimale déterministe en hori-
zon fini. La méthode s’appuie sur une formulation variationnelle max-plus et utilise les
propriétés des projecteurs sur des semi-modules max-plus. Le semi-groupe discret ob-
tenu est non-linéaire et s’interpréte comme l'opérateur de la programmation dynamique
d’un jeu déterministe & somme nulle. Nous obtenons une estimation d’erreur de ’ordre de
VAt+Az(At)~! pour une classe particuliére de problémes en dimension 1. Nous comparons
notre méthode avec une méthode de discrétisation max-plus introduite précedemment par
Fleming et Mceneaney.

Mots-clés :  Algébre max-plus, semi-anneau tropical, équation d’Hamilton-Jacobi, for-
mulation faible, résiduation, projection, semi-modules idempotents, méthode des éléments
finis.



A max-plus finite element method 3

1 Introduction

We consider the optimal control problem:

T
nmﬁmmeﬂ;ﬁmﬁhuﬁnd&+ﬂwaﬂ (1a)

over the set of trajectories (x(-),u(-)) satisfying
i(s) = f(z(s),u(s)), «(0)=z, =z(s)eX, u(s)elU, (1b)

for all 0 < s < T. Here, the state space X is a subset of R, the set of control values U is
a subset of R™, the horizon T > 0 and the initial condition x € X are given, we assume
that the map wu(-) is measurable, and that the map z(-) is absolutely continuous. We also
assume that the instantaneous reward or Lagrangian £ : X x U — R, and the dynamics
[ X xU — R”, are sufficiently regular maps, and that the terminal reward ¢ is a map
X = RU{—o00}. The value function v associates to any (z,t) € X x [0,7] the supremum
v(z,t) of fot £(x(s),u(s)) ds+ ¢(z(t)), under the constraint (1b), for 0 < s < t. Under certain
regularity assumptions, it is known that v is solution of the Hamilton-Jacobi equation

ov ov
—E+H(m,£)—0, (z,t) € X x (0,T] , (2a)
with initial condition:
v(z,0) =¢(z), Tz€X , (2b)

where H(z,p) = sup,cp l(z,u) + p- f(z,u) is the Hamiltonian of the problem (see for
instance [Lio82, FS93, Bar94|). The evolution semigroup St of (2) associates to any map ¢
the function v? := v(-, ), where v is the value function of the optimal control problem (1a).
Maslov [Mas73] (see also [MS92, KM97]|) observed that the evolution semigroup S* is
max-plus linear. Recall that the maz-plus semiring, Rmax, is the set R U {—o0}, equipped
with the addition a ® b = max(a,b) and the multiplication a ® b = a + b. By maz-plus
linearity, we mean that for all maps f, g from X to Ryax, and for all A € Ryax, we have

S(feg =S'fesy,
SHAf) = ASHf

where f @® g denotes the map z — f(z)®g(z), and Af denotes the map z — A® f(z). Linear
operators over max-plus type semirings have been widely studied, see for instance [CG79,
MS92, BCOQ92, KM97, GMO1].

In this paper, we introduce a new discretization method to solve the deterministic optimal
control problem (1), using the max-plus linearity of the semigroup St. In [FMO00], Fleming
and McEneaney introduced a max-plus based discretization method to solve a subclass of
Hamilton-Jacobi equations (with a Lagrangian £ quadratic with respect to u, and a dynamics
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4 Marianne Akian, Stéphane Gaubert and Asma Lakhoua

f affine with respect to u). They approximated the evolution semigroup S* by a max-plus
linear semigroup acting on a finitely generated semimodule of functions. This work was
pursued in [McE01, McE00, McE03b, McE03a]. Another max-plus based numerical work
on Hamilton-Jacobi equations is due to Bacaer [Bac01, Bac02]. The different discretization
that we introduce here relies on a notion of max-plus “variational formulation”, which orig-
inates from the notion of generalized solution of Hamilton-Jacobi equations of Maslov and
Kolokoltsov [KM88], [KM97, Section 3.2]. This discretization, which can be interpreted ge-
ometrically in terms of projections on semimodules, is similar to the classical finite element
method. We shall see that the space of test functions must be different from the space in
which the solution is represented, so that our discretization is indeed a max-plus analogue
of the Petrov-Galerkin finite element method. We illustrate the method by numerical exam-
ples. We also give an error estimate, in dimension one, of order v/At + Az(At)~", which is
the same as the order obtained for existing discretization methods, see [Fal87] and [BCD97,
Appendix A, by M. Falcone]

The present paper is only a preliminary account: the results will be detailed elsewhere.
A first presentation of the method appeared in [Lak03].

2 Preliminaries on residuation and projections over semi-
modules

In this section we recall some classical residuation results (see for example [DJLC53], [Bir67],
[BJ72], [BCOQY2]), and their application to linear maps on idempotents semimodules
(see [LMS01, CGQO4]). We also review some results of [CGQ96, CGQO04] concerning pro-
jectors over semimodules.

2.1 Residuation, semimodules, and linear maps

If (S, <) and (T, <) are (partially) ordered sets, we say that a map f : S — T is monotone
if s <s' = f(s) < f(s'). We say that f is residuated if there exists a map f*: T — S
such that

fs) <t = s< i) .

The map f is residuated if, and only if, for all t € T, {s € S| f(s) < t} has a maximum
element in S. Then,

fit)y=max{se S| f(s)<t}, VteT .
Moreover, in that case, we have
foffof=ftand ffofofi=f. ®3)

If a set K is a monoid for a commutative idempotent law @ (idempotent means that a®a = a),
the natural order on K is defined by a < b <= a ® b =b. We say that K is complete as

INRIA



A max-plus finite element method 5

a naturally ordered set if any subset of K has a least upper bound for the natural order. If
(K, ®,®) is an idempotent semiring, i.e., a semiring whose addition is idempotent, we say
that the semiring K is complete if it is complete as a naturally ordered set, and if the left
and right multiplications, LX, RX : K — K, LX(z) = az, R*(z) = za, are residuated.

The max-plus semiring, Ry ax, is an idempotent semiring. It is not complete, but it
can be embedded in the complete idempotent semiring Ry,., obtained by adjoining +oco to
Rinax, with the convention that —oco is absorbing for the multiplication a ® b = a + b. The
map z — —z from R to itself yields an isomorphism from Ry, to the complete idempotent
semiring Ruin, obtained by replacing max by min and by exchanging the roles of +oc and
—o0 in the definition of Ryax.

Semimodules over semirings are defined like modules over rings, mutatis mutandis,
see [LMS01, CGQO4]. When K is a complete idempotent semiring, we say that a (right)
K-semimodule X is complete if it is complete as a naturally ordered set, and if, for all u € X
and A € K, the right and left multiplications, Ry : X - X, v+~ vX and LY : K = X,
p = up, are residuated. In a complete semimodule X', we define, for all u,v € X,

u\v def (LX) (v) = max{\ € K| ul < v} .

We shall use semimodules of functions: when X is a set and (K, ®, ®) is a complete idem-
potent semiring, the set of functions KX is a complete K-semimodule for the componentwise
addition (u,v) — u @ v (defined by (u ® v)(z) = u(z) ® v(x)), and the componentwise
multiplication (A, u) — uX (defined by (u))(z) = u(z) ® N).

If K is an idempotent semiring, and if X and ) are K-semimodules, we say that a map
A: X - YVis additive if for all u,v € X, A(u®v) = A(u) ® A(v) and that A is homogeneous
ifforallu € X and A € K, A(u)) = A(u)\. We say that A is linear, or is a linear operator, if
it is additive and homogeneous. Then, as in classical algebra, we use the notation Au instead
of A(u). When A is residuated and v € ), we use the notation A\v or A*v instead of A*(v).
We denote by L(X,)) the set of linear operators from X to Y. If K is a complete idempotent
semiring, if X', Y, Z are complete K-semimodules, and if A € L(), Z) is residuated, then the
map Ly : L(X,Y) = L(X,Z), B+ Ao B, is residuated and we set A\C := (LA)*(C), for
all C € L(X, Z).

If X and Y are two sets, K is a complete idempotent semiring, and a € KX*Y, we
construct the linear operator A from KY to KX which associates to any u € KY the function
Au € KX such that Au(z) = V ey a(z,y) ® u(y), where V denotes the supremum for the
natural order. We say that A is the kernel operator with kernel or matriz a. We shall
often use the same notation A for the operator and the kernel. As is well known (see for
instance [BCOQ92]), the kernel operator A is residuated, and

(A\v)(y) = zé\XA(w, y)\v(z),
where A denotes the infimum for the natural order. In particular, when X = Rmay, we have

(A\)(y) = A (A(z,9) +v(2)) = [-A"(-0)]() , (4)

zeX
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6 Marianne Akian, Stéphane Gaubert and Asma Lakhoua

where A* denotes the transposed operator KX — KY, which is associated to the kernel
A*(y,z) = A(z,y). (In (4), we use the convention that +oo is absorbing for addition.)

2.2 Projectors on semimodules

Let V denote a complete subsemimodule of a complete semimodule X’ over a complete idem-
potent semiring K, i.e., a subset of X that is stable by arbitrary sups and by the action of
scalars. We call canonical projector on V the map

Py: X=X, u—Py(u)=max{veV|v<u} (5)

Let W denote a generating family of a complete subsemimodule V, which means that any
element v € V can be written as v = V{w\, | w € W}, for some )\, € K. It is known that

Po(w) =V, w(w\w)

(see for instance [CGQO4]). If B : Y — X is a residuated linear operator, then the image
im B of B is a complete subsemimodule of X', and

The max-plus finite element methods relies on the notion of projection on an image, parallel
to a kernel, which was introduced by Cohen, the second author, and Quadrat, in [CGQ96].
The following theorem, of which Proposition 2 below is an immediate corollary, is a variation
on the results of [CGQ96, Section 6].

Theorem 1 (Projection on an image parallel to a kernel). Let B : Y — X and
C : X = Y be two residuated linear operators. Let I = B o (C o B)* o C. We have
I = Iy oY, where Iz = Bo B* and II® = C* o C. Moreover, 11§ is a projector
()2 =1%), and for all z € X:

% (z) = max{y € im B | Cy < Cx}.

The results of [CGQ96] characterize the existence and uniqueness, for all z € X, of
y € im B such that Cy = Cz. In that case, y = 1§ (z).
Y

When K = Rpax, and C : Riax — R, is a kernel operator, I = C* o C has an
interpretation similar to (6):
M°w) =C* o C(w) = =Pim o+ (—v) = P_ime- (v)

_ =X
where —im C* is thought of as a Rpin-subsemimodule of R_; , so that,

P_imex(v) =min{w € —imC* | w > v} .

INRIA



A max-plus finite element method 7

—X . =X .

where < denotes here the usual order on R, since the natural order of R, is the reverse
=U =X .

of the usual order. When B : R, — R_ .. 1is also a kernel operator, we have

c
g = PmpoPoimc+ -

This factorization will be instrumental in the geometrical interpretation of the finite element
algorithm, see Example 10 below.

3 The max-plus finite element method

3.1 Max-plus variational formulation

We now describe the max-plus finite element method to solve the optimal control prob-
lem (1a). Let S and v! be defined as in the introduction. Using the semigroup property
S+t = 8t o St for t,t' > 0, we have the recursive equation:

vttA = ALYt =0 At,--- T — At (7

with v0 = ¢ and At = %, for some positive integer N. Let W be a Rpax-semimodule of
functions from X to Rmax such that ¢ € W and for all v € W, t > 0, Stv € W. We
suppose given a “dual” semimodule Z of “test functions” from X t0 Rmax. The max-plus
scalar product is defined by (u | v) = sup,¢x u(z) + v(z), for all functions u,v : X = R,
with the convention that —oo is absorbing for the addition +. We replace (7) by:

(z | A = (2| S8, Vze Z, t=0,At,..., T — At , ()

with v2%,... vT € W. Equation (8) can be seen as the analogue of a variational orweak
formulation. Kolokoltsov and Maslov used this formulation in [KM88| and [KM97, section
3.2] to define a notion of generalized solution of Hamilton-Jacobi equations.

3.2 Ideal max-plus finite element method

We consider a semimodule W, C W with generating family {w;}1<i<p. We call finite
elements the functions w;. We approximate v by v} € Wy, that is:

vl = Vowdl
1<i<p

where X! € Ryax. We also consider a semimodule Z;, C Z with generating family {z;}1<;<,-
The functions 21, - - - , 2, will act as test functions. We replace (8) by

(zj | UEFATY = (25 | ALY, V1<j<q, (9)

for t =0,At, -, T — At, with v) = ¢, ~ ¢ and v}, € Wy, t =0,At,---,T.

RR n° 5163



8 Marianne Akian, Stéphane Gaubert and Asma Lakhoua

Since Equation (9) need not have a solution, we look for the maximal subsolution, i.e.
the maximal solution vflJrAt € Wy, of

(zj |v +At) < Az SAtvh) Vi<j<gq. (10a)

We also take for the approximate value function v at time 0 the maximal solution v € W),
of

o) <00 . (10b)

Let us denote by W}, the max-plus linear operator from RP _ to W with matrix Wy, =
col(w;)1<i<p, and by Z; the max-plus linear operator from W to R, whose transposed
matrix is Zj, = col(zj)1<j<q- This means that W\ = \/199} wiA; for all A = (A;)i=1,..p €
RP .., and (Zjv); = (z; | v) forallv € Wand j = 1,...,q. Applying Theorem 1 to B = W),
and C = Z; and using W, = im W}, we get:

Proposition 2. The mazimal solution v:™" € W), of (10a) is given by viF2t = SPtol

where -
At _ h At
Sh = HWh o S .

Proposition 3. Let v}, € Wy, be the mazimal solution of (10), for t = 0,At,...,T. Then,
for every t = 0,At,..., T, there exists \* € RE . such that vi, = WpA'. Moreover, the
mazimal X! satisfying these conditions verifies the recursive equation

NFAL — (ZEWO\(Z; SATWRAY) (11a)
with the initial condition:

=Wp\¢ .

Proof. Since vl € Wy, vl = Wi, and the maximal A\’ satisfying this condition is \* =
W,f(v}l), for all ¢ = 0,At,...,T. Since v} is the maximal solution of (10b), then by (5)
and (6), v) = Pw,(¢) = Wy o Wi(¢), hence \° = W} o W), 0o Wi(¢) = Wi(4). Let
t =0,...,Tat. Using Proposition 2, Theorem 1, (3) and the property that (f o g)* = g*o f*
for all residuated maps f and g, we get
NFAL = W oTInE o SAY WAL

= WioWhoWjo(Zp) o Z; 0 SA (W)

= Wio(Zf)t o Zf o SAHWRAY)

= (ZIWR)H(ZESATWRAY)

which yields (11a). O

INRIA



A max-plus finite element method 9

The maps A, := Z; Wy, : Re, — RL_and By := Z;SAW), : Re,, — RY_ are max-
plus linear operators, and the entries of their corresponding matrices are given, for 1 <i <p
and 1 <j <g, by:

(An)ji = (25 | wy) (12)
(Bn)ji = (2 | S%'ws) (13)
=((S")z | wi) , (14)

where S* is the transposed semigroup of S, which is the evolution semigroup associated to
the optimal control problem in which the sign of the dynamics is changed.
The ideal max-plus finite element method can be summarized as follows:

1. Choose At = L and the finite elements (w;)1<i<p and (z;)1<j<qs

2. Compute the matrix Ay by (12) and the matrix By, by (13) or by (14),
3. Compute \° = Wj\¢ and v = W,°.

4. For t = At,2At,...,T, compute Al = Ap\(BpA!=AY) and v} = Wil

Then, v} approximates the value function at time ¢, v*.
The recursion X' = Ap\(BpA!~2!) may be written explicitly as

A= 1Ignjigq (— (An)ji + max ((Bh)jx + )\Z_At)), for1<i<p.
Observe that this recursion may be interpreted as the dynamic programming equation of a
deterministic zero-sum two players game, with finite action and state spaces.

In order to implement this method, we must specify how to compute the entries of 4 and
By in (12) and (13) or (14). In some cases, these computations can be done analytically.
Computing Ay from (12) is an optimization problem which may be solved by standard
algorithms. We shall discuss in the following section the approximation of By,.

3.3 Effective max-plus finite element method

We first discuss the approximation of S%tw for every finite element w. The Hamilton-Jacobi
equation (2a) suggests to approximate S2tw by the function [S2tw]™ such that

~ 0
[SAw]™ (z) = w(z) + AtH(z, %), for allz € X. (15)
Let [S2W},]™ denotes the max-plus linear operator from RE,, _ to W with matrix [SAtW,]~ =
col([SA*w;]™ )1<i<p, which means that [SATW,]™ A = Vi<icp[S2w;])™ Ai for all A = (\;)1<i<p €
R2 . .. The above approximation of S2fw yields an approximation of the matrix By, by the
matrix B, := Z; [SATW,]™, whose entries are given, for 1 <4 < pand 1 < j < g, by:
6’wi

(Bi)s = sup(ay@) +ui(o) + MH (@, T1)

RR n° 5163



10 Marianne Akian, Stéphane Gaubert and Asma Lakhoua

Thus, computing B, requires to solve an optimization problem, which is nothing but a
perturbation of the optimization problem associated to the computation of Ap. We may
exploit this observation by replacing B, by the matrix B;,~ with entries
(Bp )ji = {zj |wi) + At sup H(z, %) , (16)
z€argmax{z;+w;} €z

for1 <i<pandl < j <gq. Here, argmax{z; + w;} denotes the set of z such that
zj(x) + wi(z) = (2; | w;). When this set has only one element, (16) yields a convenient
approximation of By,.

Of course, w; must be differentiable for the approximation (15) to make sense. When w;
is non-differentiable, but z; is differentiable, we may approximate (Bp);; by

Oz
sup (7 (2) + AtH(z, - 52) + wi(x))
zeEX or
using the dual formula (14). We may also use the dual formula of (16), where aa“; is replaced
by —%

3.4 Comparison with the method of Fleming and McEneaney

Fleming and McEneaney proposed a max-plus based method [FM00], which also uses a space
W), generated by finite elements, w1, . .., wp, together with the linear formulation (7). Their
method approaches the value function at time ¢, v¢, by W ut, where W), = col(w;)1<i<p as
above, and ! is defined inductively by

'uo = Wh\¢ (17&)
pra = (Wi\(S*Wu))u' (17b)
for t = 0,At,...,T — At. This can be compared with the limit case of our finite element

method, in which the space of test functions Z;, generates the set of all functions. This limit
case corresponds to replacing Zj by the identity operator in (11a), so that

MFAL — 7\ (SATL ) (18)

Proposition 4. Let (ut) be the sequence of vectors defined by the algorithm of Fleming and
McEneaney, (17); let (\') be the sequence of vectors defined by the maz-plus finite element
method, in the limit case (18); and let v* denote the value function at time t. Then,

Whpt <WpAE <ot | fort=0,At,...,T .

Sketch of proof. This can be proved by induction, by using the residuation inequality W,g SAWL >
(Wr\(SAtW},)) A, which holds for all vectors A, together with the monotonicity of the oper-
ators arising in the construction of A\* and u?. O

An approximation of (17b) using formulae of the same type as (15) is also discussed
in [MH99]. An experimental comparison will appear elsewhere.

INRIA



A max-plus finite element method 11

4 Error analysis

The following general lemma shows that the error of the finite element method is controlled
by the projection errors, [Ty, v* — v![|o and [|IT%:v! — v||o, and by the approximation
errors, [|[S2w;]™ — S2w;|0o, and |(B},™ )i — (By )jil-

Lemma 5. For t = 0,At,---,T, let v* be the value function at time t, and v} be its
approzimation given by the effective max-plus finite element method, implemented with the
approzimation By~ of By, given by (16). We have

T .
o = v7lloe < (14 3 sup (I 0" =0 o 41Ty, o)

At, 1™ At ~~ ~
max ||[S™w;] — ST w; max |(B i — (B )
+1§i§Xp”[ i) 1”00+1§j%(q|( w )i — (By )jil
15ip
The proof of this lemma uses the fact that projectors over max-plus semimodules are
non-expansive in the sup-norm.
To state an error estimate, we make the following assumptions:

- (H1) The semigroup preserves the set of L-semiconvex functions, for some ¢ > 0.
- (H2) f: X x U — R" is bounded and Lipschitz continuous with respect to z:

Ly >0, Vaz,yeX, |[f(z,u)— f(y,u)| < Lflz—y| Vuel,
My >0, Vz,y € X, |f(z,u)] < My.

- (H3) ¢: X xU — R is bounded and Lipschitz continuous with respect to z:

[(z,u) = l{y,u)| < Lilz —y| Vr,yeX,uel,
[6(z,u)| < M, Vz,y € X,u € U.

- (H4) ¢: X — R is bounded and Lipschitz continuous:

|p(x) — d(y)| < Lyl —y| Ver,y € X.

Recall that a function f is L-semiconvez if f(z) 4+ 552? is convex. Spaces of semiconvex
functions were already used by Fleming and McEneaney [FMO00].

We shall use the following finite elements.

Definition 6 (Lipschitz finite elements). Assume that X is an interval of R. We
call Lipschitz finite element centered at point £ € X, with constant A > 0, the function
w(z) = —Alz — &|.

Definition 7 (Quadratic finite elements). Assume that X is an interval of R. We

call quadratic finite element centered at point & € X, with Hessian % > 0, the function

w(z) = — 5 (x — &)2.

RR n° 5163



12 Marianne Akian, Stéphane Gaubert and Asma Lakhoua

The family of Lipschitz continuous finite elements of constant A generates, in the max-
plus sense, the semimodule of Lipschitz continuous functions of Lipschitz constant A. When
X = R, the family of quadratic finite elements with Hessian % generates, in the max-plus
sense, the semimodule of lower-semicontinuous %—semi—convex functions.

Theorem 8. Let X = [-b,b] C R. We make assumptions (H1)-(H4), and assume that
there exist L > 0 such that the value function at time t, v?, is L-Lipschitz continuous and %—
semiconvez for all t > 0, with the same constant ¢ as in (H1). Let us choose quadratic finite
elements w; of Hessian %, centered at the points of the regular grid (ZAz)N[—(b+cL), (b+
cL)]. Let us choose, as test functions z;, the Lipschitz finite elements with constant A > L,
centered at the points of the regular grid (ZAz) N [—b,b]. Fort =0,At,...,T, let v} be the
approxzimation of vt given by the effective maz-plus finite element method, implemented with
the approzimation By~ of By. Then, there exists a constant K > 0 such that, for At small
enough,
T T Ax
Iof — " llo < K(VAT+35) .

A variant of this theorem, with a stronger assumption, is proved in [Lak03]. We shall

give elsewhere the proof of Theorem 8.

5 Numerical results
Example 9 (Linear Quadratic Problem). We consider the case where U =R, X = R,

Juf?

a
fo,w) =~ Gl + 1

), f(z,u)=wu, and ¢ =0 .

We obtain H(z,p) = —%|z|* + %2 We choose quadratic finite elements w; and z; of Hessian
1, centered at the points of the regular grid (ZAz)N [—L, L]. We represented in Figure 1
the solution given by our algorithm in the case where T = 5, At = Az = 0.05, a = 0.3 and
L = 10. The computations were performed using the max-plus toolbox of Scilab [Plu98].

Example 10 (Distance problem). We consider the case where T =1, ¢ =0, X =[-1,1],
U= [_17 1]7

O, u) = -1 %f z € (-1,1), and  f(z,u) = u %f z € (-1,1),
0 if ze{-1,1}, 0 if ze{-1,1}.

Consider first quadratic finite elements w; and z; of Hessian %, centered at the points of
the regular grid (ZAz) N [—1,1]. In Figure 2, we represented the solution given by our
algorithm in the case where At = 0.05, Az = 0.0125 and ¢ = 1.2. Since II%» is a projector
on a subsemimodule of the R,,;,-semimodule of —%—semiconcave functions, and since the
solution is not —%-semiconcave for any c, the error of projection [|II% (v*) — v*||o does not
converge to zero when Az goes to zero, which explains the magnitude of the error.

INRIA
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— Exact solution

-14-
—— Approximated solution

_22,

-30
-10 0 10

Figure 1: Max-plus approximation of a linear quadratic control problem (Example 9)

0.0
-0.5] — Exact solution

] —— Approximated solution
-1.0 ‘

-1.0 0 1.0

Figure 2: A bad choice of test functions for the distance problem (Example 10)
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To solve this problem, it suffices to replace the test functions z; by the Lipschitz finite
elements with constant A > 1, centered at the points of the regular grid (ZAz) N [-1,1].
This is illustrated in Figure 3 in the case where At = 0.05, Az = 0.0125, ¢ = 1.2 and
A=1.1.

0.0
-0.54 —— Exact solution
g —— Approximated solution
-1.0 ‘
-1.0 0 1.0

Figure 3: A good choice of test functions for the distance problem (Example 10)

The next two examples are inspired by those proposed by M. Falcone in [BCD97].
Example 11. We consider the case where T =1, ® =0, X =[-1,1],U =[0,1], {(z,u) = =

and f(z,u) = —zu. The optimal choise is to take u* = 0 whenever z > 0 and to move on the
right with maximum speed (u* = 1) whenever z < 0. For all ¢ € [0,T7], the value function
is:
t if 0
'U(.’E,t) = ’ t he> .
z(1—e™*) otherwise.

We choose quadratic finite elements w; of Hessian % and Lipschitz finite elements z; with

constant A > 1. We represented in Figure 4 the solution given by our algorithm in the case
where T'=1, At = 0.05, Az =0.02, A=1.3 and ¢ = 1.4.

Example 12. We consider the case where T =1, ® = 0, X = [-1,1], U = [-1,1],
L(z,u) = —=3(1 — |z|]) and f(z,u) = u(l — |z|). The optimal choise is to take u* = —1
whenever 2 > 0 and u* = 1 whenever z < 0. For all ¢ € [0, T], the value function is:

v(z,t) = =3(1 = [z])(1 —e™")

We choose quadratic finite elements w; of Hessian % and Lipschitz finite elements z; with

constant A. We represented in Figure 5 the solution given by our algorithm in the case
where T' =1, At = 0.05, Az = 0.02, A =2 and ¢ = 1.1.

INRIA
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1 —— Exact solution
0.1 1
] —— Approximated solution
_07 T
-1.0 0 1.0

Figure 4: Value function and its max-plus approximation (Example 11)

0.0
-1.04 —— Exact solution

] —— Approximated solution
-2.0 ‘ ‘

-1.0 0 1.0

Figure 5: Value function and its max-plus approximation (Example 12)
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