9 research outputs found

    Mortality from gastrointestinal congenital anomalies at 264 hospitals in 74 low-income, middle-income, and high-income countries: a multicentre, international, prospective cohort study

    Get PDF
    Summary Background Congenital anomalies are the fifth leading cause of mortality in children younger than 5 years globally. Many gastrointestinal congenital anomalies are fatal without timely access to neonatal surgical care, but few studies have been done on these conditions in low-income and middle-income countries (LMICs). We compared outcomes of the seven most common gastrointestinal congenital anomalies in low-income, middle-income, and high-income countries globally, and identified factors associated with mortality. Methods We did a multicentre, international prospective cohort study of patients younger than 16 years, presenting to hospital for the first time with oesophageal atresia, congenital diaphragmatic hernia, intestinal atresia, gastroschisis, exomphalos, anorectal malformation, and Hirschsprung’s disease. Recruitment was of consecutive patients for a minimum of 1 month between October, 2018, and April, 2019. We collected data on patient demographics, clinical status, interventions, and outcomes using the REDCap platform. Patients were followed up for 30 days after primary intervention, or 30 days after admission if they did not receive an intervention. The primary outcome was all-cause, in-hospital mortality for all conditions combined and each condition individually, stratified by country income status. We did a complete case analysis. Findings We included 3849 patients with 3975 study conditions (560 with oesophageal atresia, 448 with congenital diaphragmatic hernia, 681 with intestinal atresia, 453 with gastroschisis, 325 with exomphalos, 991 with anorectal malformation, and 517 with Hirschsprung’s disease) from 264 hospitals (89 in high-income countries, 166 in middleincome countries, and nine in low-income countries) in 74 countries. Of the 3849 patients, 2231 (58·0%) were male. Median gestational age at birth was 38 weeks (IQR 36–39) and median bodyweight at presentation was 2·8 kg (2·3–3·3). Mortality among all patients was 37 (39·8%) of 93 in low-income countries, 583 (20·4%) of 2860 in middle-income countries, and 50 (5·6%) of 896 in high-income countries (p<0·0001 between all country income groups). Gastroschisis had the greatest difference in mortality between country income strata (nine [90·0%] of ten in lowincome countries, 97 [31·9%] of 304 in middle-income countries, and two [1·4%] of 139 in high-income countries; p≤0·0001 between all country income groups). Factors significantly associated with higher mortality for all patients combined included country income status (low-income vs high-income countries, risk ratio 2·78 [95% CI 1·88–4·11], p<0·0001; middle-income vs high-income countries, 2·11 [1·59–2·79], p<0·0001), sepsis at presentation (1·20 [1·04–1·40], p=0·016), higher American Society of Anesthesiologists (ASA) score at primary intervention (ASA 4–5 vs ASA 1–2, 1·82 [1·40–2·35], p<0·0001; ASA 3 vs ASA 1–2, 1·58, [1·30–1·92], p<0·0001]), surgical safety checklist not used (1·39 [1·02–1·90], p=0·035), and ventilation or parenteral nutrition unavailable when needed (ventilation 1·96, [1·41–2·71], p=0·0001; parenteral nutrition 1·35, [1·05–1·74], p=0·018). Administration of parenteral nutrition (0·61, [0·47–0·79], p=0·0002) and use of a peripherally inserted central catheter (0·65 [0·50–0·86], p=0·0024) or percutaneous central line (0·69 [0·48–1·00], p=0·049) were associated with lower mortality. Interpretation Unacceptable differences in mortality exist for gastrointestinal congenital anomalies between lowincome, middle-income, and high-income countries. Improving access to quality neonatal surgical care in LMICs will be vital to achieve Sustainable Development Goal 3.2 of ending preventable deaths in neonates and children younger than 5 years by 2030

    Deep fake detection and classification using error-level analysis and deep learning

    Get PDF
    Abstract Due to the wide availability of easy-to-access content on social media, along with the advanced tools and inexpensive computing infrastructure, has made it very easy for people to produce deep fakes that can cause to spread disinformation and hoaxes. This rapid advancement can cause panic and chaos as anyone can easily create propaganda using these technologies. Hence, a robust system to differentiate between real and fake content has become crucial in this age of social media. This paper proposes an automated method to classify deep fake images by employing Deep Learning and Machine Learning based methodologies. Traditional Machine Learning (ML) based systems employing handcrafted feature extraction fail to capture more complex patterns that are poorly understood or easily represented using simple features. These systems cannot generalize well to unseen data. Moreover, these systems are sensitive to noise or variations in the data, which can reduce their performance. Hence, these problems can limit their usefulness in real-world applications where the data constantly evolves. The proposed framework initially performs an Error Level Analysis of the image to determine if the image has been modified. This image is then supplied to Convolutional Neural Networks for deep feature extraction. The resultant feature vectors are then classified via Support Vector Machines and K-Nearest Neighbors by performing hyper-parameter optimization. The proposed method achieved the highest accuracy of 89.5% via Residual Network and K-Nearest Neighbor. The results prove the efficiency and robustness of the proposed technique; hence, it can be used to detect deep fake images and reduce the potential threat of slander and propaganda

    Efficient handling of ACL policy change in SDN using reactive and proactive flow rule installation

    No full text
    Abstract Software-defined networking (SDN) is a pioneering network paradigm that strategically decouples the control plane from the data and management planes, thereby streamlining network administration. SDN's centralized network management makes configuring access control list (ACL) policies easier, which is important as these policies frequently change due to network application needs and topology modifications. Consequently, this action may trigger modifications at the SDN controller. In response, the controller performs computational tasks to generate updated flow rules in accordance with modified ACL policies and installs flow rules at the data plane. Existing research has investigated reactive flow rules installation that changes in ACL policies result in packet violations and network inefficiencies. Network management becomes difficult due to deleting inconsistent flow rules and computing new flow rules per modified ACL policies. The proposed solution efficiently handles ACL policy change phenomena by automatically detecting ACL policy change and accordingly detecting and deleting inconsistent flow rules along with the caching at the controller and adding new flow rules at the data plane. A comprehensive analysis of both proactive and reactive mechanisms in SDN is carried out to achieve this. To facilitate the evaluation of these mechanisms, the ACL policies are modeled using a 5-tuple structure comprising Source, Destination, Protocol, Ports, and Action. The resulting policies are then translated into a policy implementation file and transmitted to the controller. Subsequently, the controller utilizes the network topology and the ACL policies to calculate the necessary flow rules and caches these flow rules in hash table in addition to installing them at the switches. The proposed solution is simulated in Mininet Emulator using a set of ACL policies, hosts, and switches. The results are presented by varying the ACL policy at different time instances, inter-packet delay and flow timeout value. The simulation results show that the reactive flow rule installation performs better than the proactive mechanism with respect to network throughput, packet violations, successful packet delivery, normalized overhead, policy change detection time and end-to-end delay. The proposed solution, designed to be directly used on SDN controllers that support the Pyretic language, provides a flexible and efficient approach for flow rule installation. The proposed mechanism can be employed to facilitate network administrators in implementing ACL policies. It may also be integrated with network monitoring and debugging tools to analyze the effectiveness of the policy change mechanism

    An intelligent algorithm for energy efficiency optimization in software-defined wireless sensor networks for 5G communications.

    No full text
    Wireless communications have lately experienced substantial exploitation because they provide a lot of flexibility for data delivery. It provides connection and mobility by using air as a medium. Wireless sensor networks (WSN) are now the most popular wireless technologies. They need a communication infrastructure that is both energy and computationally efficient, which is made feasible by developing the best communication protocol algorithms. The internet of things (IoT) paradigm is anticipated to be heavily reliant on a networking architecture that is currently in development and dubbed software-defined WSN. Energy-efficient routing design is a key objective for WSNs. Cluster routing is one of the most commonly used routing techniques for extending network life. This research proposes a novel approach for increasing the energy effectiveness and longevity of software-defined WSNs. The major goal is to reduce the energy consumption of the cluster routing protocol using the firefly algorithm and high-efficiency entropy. According to the findings of the simulation, the suggested method outperforms existing algorithms in terms of system performance under various operating conditions. The number of alive nodes determined by the proposed algorithm is about 42.06% higher than Distributed Energy-Efficient Clustering with firefly algorithm (DEEC-FA) and 13.95% higher than Improved Firefly Clustering IFCEER and 12.05% higher than another referenced algorithm

    Machine learning based psychotic behaviors prediction from Facebook status updates

    Get PDF
    With the advent of technological advancements and the widespread Internet connectivity during the last couple of decades, social media platforms (such as Facebook, Twitter, and Instagram) have consumed a large proportion of time in our daily lives. People tend to stay alive on their social media with recent updates, as it has become the primary source of interaction within social circles. Although social media platforms offer several remarkable features but are simultaneously prone to various critical vulnerabilities. Recent studies have revealed a strong correlation between the usage of social media and associated mental health issues consequently leading to depression, anxiety, suicide commitment, and mental disorder, particularly in the young adults who have excessively spent time on social media which necessitates a thorough psychological analysis of all these platforms. This study aims to exploit machine learning techniques for the classification of psychotic issues based on Facebook status updates. In this paper, we start with depression detection in the first instance and then expand on analyzing six other psychotic issues (e.g., depression, anxiety, psychopathic deviate, hypochondria, unrealistic, and hypomania) commonly found in adults due to extreme use of social media networks. To classify the psychotic issues with the user's mental state, we have employed different Machine Learning (ML) classifiers i.e., Random Forest (RF), Support Vector Machine (SVM), Naïve Bayes (NB), and K-Nearest Neighbor (KNN). The used ML models are trained and tested by using different combinations of features selection techniques. To observe the most suitable classifiers for psychotic issue classification, a cost-benefit function (sometimes termed as ‘Suitability’) has been used which combines the accuracy of the model with its execution time. The experimental evidence argues that RF outperforms its competitor classifiers with the unigram feature set

    International Nosocomial Infection Control Consortiu (INICC) report, data summary of 43 countries for 2007-2012. Device-associated module

    No full text
    We report the results of an International Nosocomial Infection Control Consortium (INICC) surveillance study from January 2007-December 2012 in 503 intensive care units (ICUs) in Latin America, Asia, Africa, and Europe. During the 6-year study using the Centers for Disease Control and Prevention's (CDC) U.S. National Healthcare Safety Network (NHSN) definitions for device-associated health care–associated infection (DA-HAI), we collected prospective data from 605,310 patients hospitalized in the INICC's ICUs for an aggregate of 3,338,396 days. Although device utilization in the INICC's ICUs was similar to that reported from ICUs in the U.S. in the CDC's NHSN, rates of device-associated nosocomial infection were higher in the ICUs of the INICC hospitals: the pooled rate of central line–associated bloodstream infection in the INICC's ICUs, 4.9 per 1,000 central line days, is nearly 5-fold higher than the 0.9 per 1,000 central line days reported from comparable U.S. ICUs. The overall rate of ventilator-associated pneumonia was also higher (16.8 vs 1.1 per 1,000 ventilator days) as was the rate of catheter-associated urinary tract infection (5.5 vs 1.3 per 1,000 catheter days). Frequencies of resistance of Pseudomonas isolates to amikacin (42.8% vs 10%) and imipenem (42.4% vs 26.1%) and Klebsiella pneumoniae isolates to ceftazidime (71.2% vs 28.8%) and imipenem (19.6% vs 12.8%) were also higher in the INICC's ICUs compared with the ICUs of the CDC's NHSN

    SARS-CoV-2 vaccination modelling for safe surgery to save lives: data from an international prospective cohort study

    No full text
    Background: Preoperative SARS-CoV-2 vaccination could support safer elective surgery. Vaccine numbers are limited so this study aimed to inform their prioritization by modelling. Methods: The primary outcome was the number needed to vaccinate (NNV) to prevent one COVID-19-related death in 1 year. NNVs were based on postoperative SARS-CoV-2 rates and mortality in an international cohort study (surgical patients), and community SARS-CoV-2 incidence and case fatality data (general population). NNV estimates were stratified by age (18-49, 50-69, 70 or more years) and type of surgery. Best- and worst-case scenarios were used to describe uncertainty. Results: NNVs were more favourable in surgical patients than the general population. The most favourable NNVs were in patients aged 70 years or more needing cancer surgery (351; best case 196, worst case 816) or non-cancer surgery (733; best case 407, worst case 1664). Both exceeded the NNV in the general population (1840; best case 1196, worst case 3066). NNVs for surgical patients remained favourable at a range of SARS-CoV-2 incidence rates in sensitivity analysis modelling. Globally, prioritizing preoperative vaccination of patients needing elective surgery ahead of the general population could prevent an additional 58 687 (best case 115 007, worst case 20 177) COVID-19-related deaths in 1 year. Conclusion: As global roll out of SARS-CoV-2 vaccination proceeds, patients needing elective surgery should be prioritized ahead of the general population
    corecore