4 research outputs found

    Positional Differences in Training Load During Matches and Practices in Collegiate Female Soccer Players

    Get PDF
    Click the PDF icon to download the abstract

    Match Demands of Women’s Collegiate Soccer

    No full text
    Research describing the match and specific positional demands during match play in women’s collegiate soccer is limited. The purpose of the study was to quantify the match demands of National Collegiate Athletic Association (NCAA) Division III soccer and assess position differences in movement kinematics, heart rate (HR), and energy expenditure. Twenty-five Division III women soccer players (height: 1.61 ± 0.3 m; body mass: 66.7 ± 7.5 kg; fat-free mass: 50.3 ± 6.5 kg; body fat%: 25.6 ± 5.1%) were equipped with a wearable global positioning system to assess the demands of 22 matches throughout a season. Players were categorized by position (goal keepers (GK), center defenders (CB), flank players (FP), forwards (F), and center midfielders (CM)). Players covered 9807 ± 2588 m and 1019 ± 552 m at high speeds (>249.6 m·m−1), with an overall average speed of 62.85 ± 14.7 m·m−1. This resulted in a mean HR of 74.2 ± 6% HR max and energy expenditure of 1259 ± 309 kcal. Significant and meaningful differences in movement kinematics were observed across position groups. CM covered the most distance resulting in the highest training load. FP covered the most distance at high speeds and mean HR values were highest in CM, CB, and FP positions

    The effect of omega-3 fatty acids on a biomarker of head trauma in NCAA football athletes: a multi-site, non-randomized study

    No full text
    Background American-style football (ASF) athletes are at risk for cardiovascular disease (CVD) and exhibit elevated levels of serum neurofilament light (Nf-L), a biomarker of axonal injury that is associated with repetitive head impact exposure over the course of a season of competition. Supplementation with the w-3 fatty acid (FA) docosahexaenoic acid (DHA) attenuates serum Nf-L elevations and improves aspects of CVD, such as the omega-3 index (O3I). However, the effect of combining the w-3 FA eicosapentaenoic acid (EPA) and docosapentaenoic acid (DPA) with DHA on, specifically, serum Nf-L in ASF athletes is unknown. Therefore, this study assessed the effect of supplemental w-3 FA (EPA+DPA+DHA) on serum Nf-L, plasma w-3 FAs, the O3I, and surrogate markers of inflammation over the course of a season. Methods A multi-site, non-randomized design, utilizing two American football teams was employed. One team (n = 3 1) received supplementation with a highly bioavailablew-3 FA formulation (2000mg DHA, 560mg EPA, 320mg DPA, Mindset®, Struct Nutrition, Missoula, MT) during pre-season and throughout the regular season, while the second team served as the control (n = 35) and did not undergo supplementation. Blood was sampled at specific times throughout pre- and regular season coincident w ith changes in intensity, physical contact, and changes in the incidence and severity of head impacts. Group differences were determined via a mixed-model between-within subjects ANOVA. Effect sizes were calculated using Cohen’s dfor all between-group differences. Significance was set a priori at p< .05. Results Compared to the control group, ASF athletes in the treatment group experienced large increases in plasma EPA (p < .001, d = 1.71) and DHA (p < .001, d = 2.10) which contributed to increases in the O3I (p < .001, d = 2.16) and the EPA:AA ratio (p = .001, d = 0.83) and a reduction in the w-6: w-3 ratio (p < .001, d = 1.80). w-3 FA supplementation attenuated elevations in Nf-L (p = .024). The control group experienced a significant increase in Nf-L compared to baseline at several measurement time points (T2, T3, and T4 [p range < .001 – .005, drange = 0.59-0.85]). Conclusions These findings suggest a cardio- and neuroprotective effect of combined EPA+DPA+DHA w-3 FA supplementation in American-style football athletes. Trial registration This trial was registered with the ISRCTN registry (ISRCTN90306741)

    Supplemental Table 1

    No full text
    Feeding and resistance exercise stimulate myofibrillar protein synthesis rates (MPS) in healthy adults. This anabolic characterization of ‘healthy adults’ has been namely focused on males. Therefore, the purpose of this study was to examine the temporal responses of MPS and anabolic signaling to resistance exercise alone or combined with the ingestion of protein in post-menopausal females and compare postabsorptive rates with young females. Sixteen females (60 ± 7 y; BMI = 26 ± 12 kg·m-2) completed an acute bout of unilateral resistance exercise before consuming either: a fortified whey protein supplement (WHEY) or water. Participants received primed continuous infusions of L-[ring-13C6]phenylalanine with bilateral muscle biopsies before and after treatment ingestion at 2 h and 4 h in non-exercised and exercised legs. Resistance exercise transiently increased MPS above baseline at 0-2 h in the water condition (P = 0.007). Feeding after exercise resulted in a late phase (2-4 h) increase in MPS in the WHEY condition (P = 0.005). In both conditions, exercise did not enhance the cumulative (0-4 h) MPS response. In the non-exercised leg, MPS did not differ at 0-2 h, 2-4 h, or 0-4 h of the measurement periods (all, P > 0.05). Likewise, there were no changes in the phosphorylation of p70S6K, AMPKα, or total and phosphorylated yes-associated protein on Ser127. Post-absorptive MPS were lower in pre-menopausal vs. post-menopausal females (P = 0.023). We show that resistance exercise-induced changes in MPS are temporally regulated, but do not result in greater cumulative (0-4 h) MPS in post-menopausal women.</p
    corecore