5 research outputs found

    H<sub>2</sub>S and NH<sub>3</sub> Detection with Langmuir-Schaefer Monolayer Organic Field-Effect Transistors

    No full text
    In this work gas sensing properties of Langmuir-Schaefer monolayer organic field-effect transistors (LS OFETs) prepared from organosilicon derivative of [1]benzothieno[3,2-b][1]-benzothiophene (BTBT) have been investigated. The monolayer has been deposited using Langmuir-Schaefer method, which results in a uniform low-defect monolayer with excellent electrical performance, hole mobility up to 7 &#215; 10&#8722;2 cm2 V&#8722;1 s&#8722;1, the threshold voltage around 0 V and on-off ratio of 104. Developed sensors demonstrate a long-term stability of a half-year storage under ambient conditions. Preliminary investigations demonstrated that the LS OFETs give instantaneous response on ammonia and hydrogen sulfide at low concentrations. The results reported open new perspectives for the OFET-based gas-sensing technology

    Applying of C8-BTBT-Based EGOFETs at Different pH Values of the Electrolyte

    No full text
    Electrolyte-gated organic field-effect transistors (EGOFETs) is a popular platform for numerous sensing and biosensing applications in aqueous media. In this work, the variation of electrical characteristics of EGOFETs based on small-molecule organic semiconductor C8-BTBT and polystyrene blend in water solutions at different pH values was investigated. A positive shift of the threshold voltage with near-Nernstian pH sensitivity was demonstrated in the pH range from 4.9 to 2.8, while no measurable pH dependence in the range from 4.9 to 8.6 pH was registered. These results indicate chemical doping of the molecules of organic semiconductors by protons from the electrolyte in the acidic region. In order to check the applicability of the EGOFETs in a flow mode, a flow chamber was designed and assembled. The preliminary results obtained in the flow mode measurements showed a fast response to pH variation

    Applying of C8-BTBT-Based EGOFETs at Different pH Values of the Electrolyte

    No full text
    Electrolyte-gated organic field-effect transistors (EGOFETs) is a popular platform for numerous sensing and biosensing applications in aqueous media. In this work, the variation of electrical characteristics of EGOFETs based on small-molecule organic semiconductor C8-BTBT and polystyrene blend in water solutions at different pH values was investigated. A positive shift of the threshold voltage with near-Nernstian pH sensitivity was demonstrated in the pH range from 4.9 to 2.8, while no measurable pH dependence in the range from 4.9 to 8.6 pH was registered. These results indicate chemical doping of the molecules of organic semiconductors by protons from the electrolyte in the acidic region. In order to check the applicability of the EGOFETs in a flow mode, a flow chamber was designed and assembled. The preliminary results obtained in the flow mode measurements showed a fast response to pH variation

    Quantitative Detection of the Influenza a Virus by an EGOFET-Based Portable Device

    No full text
    Elaboration of biosensors on the base of organic transistors with embedded biomolecules which can operate in an aqueous environment is of paramount importance. Electrolyte-gated organic field-effect transistors demonstrate high sensitivity in detection of various analytes. In this paper, we demonstrated the possibility of quantitative fast specific determination of virus particles by an aptasensor based on EGOFET. The sensitivity and selectivity of the devices were examined with the influenza A virus as well as with control bioliquids like influenza B, Newcastle disease viruses or allantoic fluid with different dilutions. The influence of the semiconducting layer thickness on EGOFETs sensory properties is discussed. The fabrication of a multi-flow cell that simultaneously registers the responses from several devices on the same substrate and the creation of a multi-sensor flow device are reported. The responses of the elaborated bioelectronic platform to the influenza A virus obtained with application of the portable multi-flow mode are well correlated with the responses obtained in the laboratory stationary mode
    corecore