5,281 research outputs found
Checklist of British and Irish Hymenoptera - Chalcidoidea and Mymarommatoidea
This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. The attached file is the published version of the article.NHM Repositor
BFKL versus HERA
The BFKL equation and the kT-factorization theorem are used to obtain
predictions for F2 in the small Bjorken-x region over a wide range of Q**2. The
dependence on the parameters, especially on those concerning the infrared
region, is discussed. After a background fit to recent experimental data
obtained at HERA and at Fermilab (E665 experiment), we find that the predicted,
almost Q**2 independent BFKL slope lambda >= 0.5 appears to be too steep at
lower Q**2 values. Thus there seems to be a chance that future HERA data can
distinguish between pure BFKL and conventional field theoretic renormalization
group approaches.Comment: 26 pages, 6 eps figures, LaTeX2e using epsfig.sty and amssymb.st
Anatomy of the differential gluon structure function of the proton from the experimental data on F_2p
The use of the differential gluon structure function of the proton introduced by Fadin, Kuraev and Lipatov in 1975 is called upon in
many applications of small-x QCD. We report here the first determination of
from the experimental data on the small-x proton structure
function . We give convenient parameterizations for based partly on the available DGLAP evolution fits (GRV, CTEQ &
MRS) to parton distribution functions and on realistic extrapolations into soft
region. We discuss an impact of soft gluons on various observables. The
x-dependence of the so-determined varies strongly with Q^2
and does not exhibit simple Regge properties. None the less the hard-to-soft
diffusion is found to give rise to a viable approximation of the proton
structure function F_{2p}(x,Q^2) by the soft and hard Regge components with
intercepts \Delta_{soft}=0 and \Delta_{hard}\sim 0.4.Comment: 37 pages, 25 figure
A unified BFKL and GLAP description of data
We argue that the use of the universal unintegrated gluon distribution and
the (or high energy) factorization theorem provides the natural framework
for describing observables at small x. We introduce a coupled pair of evolution
equations for the unintegrated gluon distribution and the sea quark
distribution which incorporate both the resummed leading BFKL
contributions and the resummed leading GLAP contributions. We solve
these unified equations in the perturbative QCD domain using simple parametic
forms of the nonperturbative part of the integrated distributions. With only
two (physically motivated) input parameters we find that this
factorization approach gives an excellent description of the measurements of
at HERA. In this way the unified evolution equations allow us to
determine the gluon and sea quark distributions and, moreover, to see the x
domain where the resummed effects become significant. We use
factorization to predict the longitudinal structure function and
the charm component of .Comment: 25 pages, LaTeX, 9 figure
Managing affect in learners' questions in undergraduate science
This is the author's accepted manuscript. The final published article is available from the link below. Copyright @ 2012 Society for Research into Higher Education.This article aims to position students' classroom questioning within the literature surrounding affect and its impact on learning. The article consists of two main sections. First, the act of questioning is discussed in order to highlight how affect shapes the process of questioning, and a four-part genesis to question-asking that we call CARE is described: the construction, asking, reception and evaluation of a learner's question. This work is contextualised through studies in science education and through our work with university students in undergraduate chemistry, although conducted in the firm belief that it has more general application. The second section focuses on teaching strategies to encourage and manage learners' questions, based here upon the conviction that university students in this case learn through questioning, and that an inquiry-based environment promotes better learning than a simple ‘transmission’ setting. Seven teaching strategies developed from the authors' work are described, where university teachers ‘scaffold’ learning through supporting learners' questions, and working with these to structure and organise the content and the shape of their teaching. The article concludes with a summary of the main issues, highlighting the impact of the affective dimension of learning through questioning, and a discussion of the implications for future research
Search for associated Higgs boson production using like charge dilepton events in p(p)over-bar collisions at root s=1.96 TeV
We present a search for associated Higgs boson production in the process p (p) over bar -> W/ZH -> l(+/-)l'(+/-) + X in ee, e mu, and mu mu final states. The search is based on data collected by the D0 experiment at the Fermilab Tevatron Collider at root s = 1.96 TeV corresponding to 5.3 fb(-1) of integrated luminosity. We require two isolated leptons (electrons or muons) with the same electric charge and additional kinematic requirements. No significant excess above background is observed, and we set 95% C. L. observed (expected) upper limits on ratio of the production cross section to the standard model prediction of 6.4 (7.3) for a Higgs boson mass of 165 GeV and 13.5 (19.8) for a mass of 115 GeV
Dijet Production at Hadron--Hadron Colliders in the BFKL Approach
The production in high-energy hadron collisions of a pair of jets with large
rapidity separation is studied in an improved BFKL formalism. By recasting the
analytic solution of the BFKL equation as an explicit order-by-order sum over
emitted gluons, the effects of phase space constraints and the running coupling
are studied. Particular attention is paid to the azimuthal angle decorrelation
of the jet pair. The inclusion of sub-leading effects significantly improves
the agreement between the theoretical predictions and recent preliminary
measurements from the Dzero collaboration.Comment: 19 pages LaTeX; one figure corrected; conclusions unchange
Interactions between the Nse3 and Nse4 Components of the SMC5-6 Complex Identify Evolutionarily Conserved Interactions between MAGE and EID Families
The SMC5-6 protein complex is involved in the cellular response to DNA damage. It is composed of 6-8 polypeptides, of which Nse1, Nse3 and Nse4 form a tight sub-complex. MAGEG1, the mammalian ortholog of Nse3, is the founding member of the MAGE (melanoma-associated antigen) protein family and Nse4 is related to the EID (E1A-like inhibitor of differentiation) family of transcriptional repressors.Using site-directed mutagenesis, protein-protein interaction analyses and molecular modelling, we have identified a conserved hydrophobic surface on the C-terminal domain of Nse3 that interacts with Nse4 and identified residues in its N-terminal domain that are essential for interaction with Nse1. We show that these interactions are conserved in the human orthologs. Furthermore, interaction of MAGEG1, the mammalian ortholog of Nse3, with NSE4b, one of the mammalian orthologs of Nse4, results in transcriptional co-activation of the nuclear receptor, steroidogenic factor 1 (SF1). In an examination of the evolutionary conservation of the Nse3-Nse4 interactions, we find that several MAGE proteins can interact with at least one of the NSE4/EID proteins.We have found that, despite the evolutionary diversification of the MAGE family, the characteristic hydrophobic surface shared by all MAGE proteins from yeast to humans mediates its binding to NSE4/EID proteins. Our work provides new insights into the interactions, evolution and functions of the enigmatic MAGE proteins
Pitch then power: limitations to acceleration in quadrupeds
Rapid acceleration and deceleration are vital for survival in many predator and prey animals and are important attributes of animal and human athletes. Adaptations for acceleration and deceleration are therefore likely to experience strong selective pressures—both natural and artificial. Here, we explore the mechanical and physiological constraints to acceleration. We examined two elite athletes bred and trained for acceleration performance (polo ponies and racing greyhounds), when performing maximal acceleration (and deceleration for ponies) in a competitive setting. We show that maximum acceleration and deceleration ability may be accounted for by two simple limits, one mechanical and one physiological. At low speed, acceleration and deceleration may be limited by the geometric constraints of avoiding net nose-up or tail-up pitching, respectively. At higher speeds, muscle power appears to limit acceleration
The triple-pomeron regime and the structure function of the pomeron in the diffractive deep inelastic scattering at very small x
Misprints and numerical coefficients corrected, a bit of phenomenology and
one figure added. The case for the linear evolution of the unitarized structure
functions made stronger.Comment: KFA-IKP(Th)-1993-17, Landau-16/93, 46 pages, 14 figures upon request
from N.Nikolaev, [email protected]
- …