7 research outputs found

    Pitfalls of Practicing Cancer Epidemiology in Resource-limited Settings: the Case of Survival and Loss to Follow-up after a Diagnosis of Kaposi’s Sarcoma in Five Countries across Sub-Saharan Africa

    Get PDF
    Background: Survival after diagnosis is a fundamental concern in cancer epidemiology. In resource-rich settings, ambient clinical databases, municipal data and cancer registries make survival estimation in real-world populations relatively straightforward. In resource-poor settings, given the deficiencies in a variety of health-related data systems, it is less clear how well we can determine cancer survival from ambient data. Methods: We addressed this issue in sub-Saharan Africa for Kaposi’s sarcoma (KS), a cancer for which incidence has exploded with the HIV epidemic but for which survival in the region may be changing with the recent advent of antiretroviral therapy (ART). From 33 primary care HIV Clinics in Kenya, Uganda, Malawi, Nigeria and Cameroon participating in the International Epidemiologic Databases to Evaluate AIDS (IeDEA) Consortia in 2009–2012, we identified 1328 adults with newly diagnosed KS. Patients were evaluated from KS diagnosis until death, transfer to another facility or database closure. Results: Nominally, 22 % of patients were estimated to be dead by 2 years, but this estimate was clouded by 45 % cumulative lost to follow-up with unknown vital status by 2 years. After adjustment for site and CD4 count, agelost. Conclusions: In this community-based sample of patients diagnosed with KS in sub-Saharan Africa, almost half became lost to follow-up by 2 years. This precluded accurate estimation of survival. Until we either generally strengthen data systems or implement cancer-specific enhancements (e.g., tracking of the lost) in the region, insights from cancer epidemiology will be limited

    Pitfalls of practicing cancer epidemiology in resource-limited settings: the case of survival and loss to follow-up after a diagnosis of Kaposi’s sarcoma in five countries across sub-Saharan Africa

    Get PDF
    Background: Survival after diagnosis is a fundamental concern in cancer epidemiology. In resource-rich settings, ambient clinical databases, municipal data and cancer registries make survival estimation in real-world populations relatively straightforward. In resource-poor settings, given the deficiencies in a variety of health-related data systems, it is less clear how well we can determine cancer survival from ambient data. Methods: We addressed this issue in sub-Saharan Africa for Kaposi’s sarcoma (KS), a cancer for which incidence has exploded with the HIV epidemic but for which survival in the region may be changing with the recent advent of antiretroviral therapy (ART). From 33 primary care HIV Clinics in Kenya, Uganda, Malawi, Nigeria and Cameroon participating in the International Epidemiologic Databases to Evaluate AIDS (IeDEA) Consortia in 2009–2012, we identified 1328 adults with newly diagnosed KS. Patients were evaluated from KS diagnosis until death, transfer to another facility or database closure. Results: Nominally, 22 % of patients were estimated to be dead by 2 years, but this estimate was clouded by 45 % cumulative lost to follow-up with unknown vital status by 2 years. After adjustment for site and CD4 count, age <30 years and male sex were independently associated with becoming lost. Conclusions: In this community-based sample of patients diagnosed with KS in sub-Saharan Africa, almost half became lost to follow-up by 2 years. This precluded accurate estimation of survival. Until we either generally strengthen data systems or implement cancer-specific enhancements (e.g., tracking of the lost) in the region, insights from cancer epidemiology will be limited

    Task Shifting and Skin Punch for the Histologic Diagnosis of Kaposi's Sarcoma in Sub-Saharan Africa: A Public Health Solution to a Public Health Problem

    No full text
    Fueled by HIV, sub-Saharan Africa has the highest incidence of Kaposi’s sarcoma (KS) in the world. Despite this, most KS diagnosis in the region is on clinical grounds. Where biopsy is available, it has traditionally been excisional and performed by surgeons, resulting in multiple appointments, follow-up visits for suture removal, and substantial costs. We hypothesized a simpler approach — skin punch biopsy — would make histologic diagnosis more accessible. To address this, we provided training and equipment for skin punch biopsy of suspected KS to three HIV clinics in East Africa. The procedure consisted of local anesthesia followed by a disposable cylindrical punch blade to obtain specimen. Hemostasis is facilitated by Gelfoam®. Patients remove the dressing after four days. From 2007 to 2013, 2799 biopsies were performed. Although originally targeted to physicians, biopsies were performed predominantly by nurses (62%), followed by physicians (15%), clinical officers (12%) and technicians (11%). There were no reports of recurrent bleeding or infection. After minimal training and provision of inexpensive equipment ($3.06 per biopsy), HIV clinics in East Africa can integrate same-day skin punch biopsy for suspected KS. Task shifting from physician to non-physician greatly increases access. Skin punch biopsy should be part of any HIV clinic’s essential procedures. This example of task shifting may also be applicable to the diagnosis of other cancers (e.g., breast) in resource-limited settings
    corecore