12 research outputs found

    Upscaling of Apple By-Product by Utilising Apple Seed Protein as a Novel Wall Material for Encapsulation of Chlorogenic Acid as Model Bioactive Compound

    Get PDF
    Encapsulation is a versatile technique used to protect sensitive bioactive compounds under gastrointestinal conditions. In this study, nanoencapsulation of chlorogenic acid into the apple seed protein matrix was performed using the green technique ultrasonication to protect it from harsh gastric conditions and increase its biological activity and bioavailability upon digestion. Both nano (Nano-Chl) and native capsules (NT-Chl) were characterised by particle size, charge, structure, and morphology. The encapsulation efficiency, release behaviour, antioxidant and antidiabetic properties were also evaluated. The experimental results show that the particle size of the NT-Chl and Nano- Chl was found in the range of 1.4m to 708 nm. The encapsulation efficiency was found to be 69% and 80% for NT-Chl and Nano-Chl, respectively. Furthermore, an in vitro digestion study revealed that Nano-Chl showed controlled-release behaviour under simulated intestinal conditions in comparison to NT-Chl. Moreover, Nano-Chl showed enhanced antioxidant and antidiabetic activity in comparison to NT-Chl after simulated digestion. It was concluded that the protein from apple seeds could be utilised as a functional ingredient itself or as a wall material for the encapsulation of sensitive bioactive compounds. Furthermore, these encapsulated particles can be fortified into different food formulations for the development of functional food

    Development of Virgin Coconut Oil Emulsified Surimi Gel with Nutraceutical Properties

    Get PDF
    Thesis (Ph.D., Food Science and Technology)--Prince of Songkla University, 201

    Time-dependent extraction kinetics of infused components of different Indian black tea types using UV spectroscopy

    No full text
    Time-dependent aqueous extraction of six tea types was carried out with leaf–water–ratio of 0.5 g/100 ml, temperature of extraction 90°C and time of extraction ranging from 1 to 10 min. UV–vis spectroscopic analysis in the range varying from 220 to 900 nm of the aqueous tea extracts showed a prominent peak at 273 nm in the ultraviolet region which can be associated with n → π* electronic transition of caffeine molecules. Parabolic diffusion, Power law, hyperbolic, Weibull’s and Elovich’s models were fitted to represent the aqueous soluble component extraction behaviour for time-dependent extraction of aqueous extractables. Parabolic diffusion model, Power law and Elovich’s model were a close fit to the experimental data for all the selected tea types with correlation coefficients (R2) ranging 0.8029–0.9953, whereas hyperbolic and Weibull’s models showed poor fitness to represent the extraction behaviour of fanning and AO leaf, LD, fanning and dust, respectively, with R2 < 0.8, for time-dependent aqueous soluble component extraction

    Encapsulation of Catechin into &beta;-Glucan Matrix Using Wet Milling and Ultrasonication as a Coupled Approach: Characterization and Bioactivity Retention

    No full text
    In this study, the nanoencapsulation of catechin into the &beta;-glucan matrix from oats [O-Glu (C)] and barley [B-Glu (C)] was performed using the coupled approach of ultrasonication and wet milling. The nanoencapsulated catechin was characterised by particle size distribution, surface charge, SEM, and FTIR. The particle size was found to be 200 nm and 500 nm while zeta potential was found &minus;27.13 and &minus;24 mV for O-Glu (C) and B-Glu (C), respectively. The encapsulation efficiency of O-Glu (C) and B-Glu (C) was found to be 86.5% and 88.2%. FTIR and SEM revealed successful entrapment of catechin in &beta;-glucan. The encapsulated capsules showed sustainable release during simulated gastrointestinal conditions. Moreover, both O-Glu (C) and B-Glu (C) showed that biological activity such as lipase inhibition activity and antioxidant assay were retained after in vitro digestion. It was concluded that O-Glu (C) and B-Glu (C) can be used as functional ingredients effectively in food as well as in the pharmaceutical field

    Effect of extraction time on antioxidants and bioactive volatile components of green tea (Camellia sinensis), using GC/MS

    No full text
    Two green tea types, leaf grade and sanding, were extracted at different time intervals: 20, 40, and 120 min at a constant temperature of 50°C. The extracts were analyzed by GC/MS technique. The major compounds identified were myristic acid, palmitic acid, stearic acid, oleic acid, 1H-purine-2,6-dione, caffeine, linoleic acid, diethyl ester, and 1H-purine-6-amine. Stearic acid, palmitic acid, linoleic acid, and myristic acid were more abundantly present in the leaf-grade variety than sanding. However, some levels of acetic acid, cyclobutanol, hexadecanoic acid, octadecanoic acid, 9-octadecenoic acid, and caffeine were also found in both the tea types. Most of the volatile compounds were detected between 20–40-min time of extraction. The 40-min time of extraction also showed the maximum content of polyphenols and antioxidants in both the tea types. Thus, 40 min was suggested as the most suitable time for maximum extraction of bioactive volatiles, antioxidants, and polyphenols from green tea

    Effect of extraction time on antioxidants and bioactive volatile components of green tea (Camellia sinensis), using GC/MS

    No full text
    Abstract: Two green tea types, leaf grade and sanding, were extracted at different time intervals: 20, 40, and 120 min at a constant temperature of 50°C. The extracts were analyzed by GC/MS technique. The major compounds identified were myristic acid, palmitic acid, stearic acid, oleic acid, 1H-purine-2,6-dione, caffeine, linoleic acid, diethyl ester, and 1H-purine-6-amine. Stearic acid, palmitic acid, linoleic acid, and myristic acid were more abundantly present in the leaf-grade variety than sanding. However, some levels of acetic acid, cyclobutanol, hexadecanoic acid, octadecanoic acid, 9-octadecenoic acid, and caffeine were also found in both the tea types. Most of the volatile compounds were detected between 20-40-min time of extraction. The 40-min time of extraction also showed the maximum content of polyphenols and antioxidants in both the tea types. Thus, 40 min was suggested as the most suitable time for maximum extraction of bioactive volatiles, antioxidants, and polyphenols from green tea

    A review of the recent advances in starch as active and nanocomposite packaging films

    No full text
    Technological advances have led to increased constraints regarding food packaging due to environmental issues, consumer health concerns, and economic restrictions associated therewith. Hence, food scientists and technologists are now more focused on developing biopolymer packages. Starch satisfies all the principle aspects, making it a promising raw material for edible coatings/films. Starch as a package material has grabbed much attention both at academic as well as industrial levels. Besides this, the role of various plasticizers, polys, sugars, and wetting agents are discussed and their importance in packaging industries. Herein, the role of starch as packaging material and nanofillers/composites is discussed in detail. The review summons a comprehensive and current overview of the widely available information and recent advances in starch film packaging
    corecore