25 research outputs found

    Human Reinforcement Learning: Insights from intracranial recordings and stimulation

    Get PDF
    Reinforcement learning is the process by which individuals alter their decisions to maximize positive outcomes, and minimize negative outcomes. It is a cognitive process that is widely used in our daily lives and is often disrupted during psychiatric disease. Thus, a major goal of neuroscience is to characterize the neural underpinnings of reinforcement learning. Whereas animal studies have utilized invasive physiological methods to characterize several neural mechanisms that underlie reinforcement learning, human studies have largely relied on non-invasive techniques that have reduced physiological precision. Although ethical limitations preclude the use of invasive physiological methods in healthy human populations, patient populations undergoing certain neurosurgical interventions offer a rare opportunity to directly assay neural activity from the brain during human reinforcement learning. This dissertation presents early findings from this research effort

    Factors associated with increased survival after surgical resection of glioblastoma in octogenarians.

    Get PDF
    Elderly patients with glioblastoma represent a clinical challenge for neurosurgeons and oncologists. The data available on outcomes of patients greater than 80 undergoing resection is limited. In this study, factors linked to increased survival in patients over the age of 80 were analyzed. A retrospective chart review of all patients over the age of 80 with a new diagnosis of glioblastoma and who underwent surgical resection with intent for maximal resection were examined. Patients who had only stereotactic biopsies were excluded. Immunohistochemical expression of oncogenic drivers (p53, EGFR, IDH-1) and a marker of cell proliferation (Ki-67 index) performed upon routine neuropathological examination were recorded. Stepwise logistic regression and Kaplan Meier survival curves were plotted to determine correlations to overall survival. Fifty-eight patients fit inclusion criteria with a mean age of 83 (range 80-93 years). The overall median survival was 4.2 months. There was a statistically significant correlation between Karnofsky Performance Status (KPS) and overall survival (P < 0.05). There was a significantly longer survival among patients undergoing either radiation alone or radiation and chemotherapy compared to those who underwent no postoperative adjuvant therapy (p < 0.05). There was also an association between overall survival and lack of p53 expression (p < 0.001) and lack of EGFR expression (p <0.05). In this very elderly population, overall survival advantage was conferred to those with higher preoperative KPS, postoperative adjuvant therapy, and lack of protein expression of EGFR and p53. These findings may be useful in clinical decision analysis for management of patients with glioblastoma who are octogenarians, and also validate the critical role of EGFR and p53 expression in oncogenesis, particularly with advancing age

    Theta and high-frequency activity mark spontaneous recall of episodic memories.

    Get PDF
    Humans possess the remarkable ability to search their memory, allowing specific past episodes to be re-experienced spontaneously. Here, we administered a free recall test to 114 neurosurgical patients and used intracranial theta and high-frequency activity (HFA) to identify the spatiotemporal pattern of neural activity underlying spontaneous episodic retrieval. We found that retrieval evolved in three electrophysiological stages composed of: (1) early theta oscillations in the right temporal cortex, (2) increased HFA in the left hemisphere including the medial temporal lobe (MTL), left inferior frontal gyrus, as well as the ventrolateral temporal cortex, and (3) motor/language activation during vocalization of the retrieved item. Of these responses, increased HFA in the left MTL predicted recall performance. These results suggest that spontaneous recall of verbal episodic memories involves a spatiotemporal pattern of spectral changes across the brain; however, high-frequency activity in the left MTL represents a final common pathway of episodic retrieval

    Proximity of Substantia Nigra Microstimulation to Putative GABAergic Neurons Predicts Modulation of Human Reinforcement Learning

    Get PDF
    Neuronal firing in the substantia nigra (SN) immediately following reward is thought to play a crucial role in human reinforcement learning. As in Ramayya et al. (2014a) we applied microstimulation in the SN of patients undergoing deep brain stimulation (DBS) for the treatment of Parkinson's disease as they engaged in a two-alternative reinforcement learning task. We obtained microelectrode recordings to assess the proximity of the electrode tip to putative dopaminergic and GABAergic SN neurons and applied stimulation to assess the functional importance of these neuronal populations for learning. We found that the proximity of SN microstimulation to putative GABAergic neurons predicted the degree of stimulation-related changes in learning. These results extend previous work by supporting a specific role for SN GABA firing in reinforcement learning. Stimulation near these neurons appears to dampen the reinforcing effect of rewarding stimuli

    Long-term outcomes following deep brain stimulation for Parkinson\u27s disease

    No full text
    OBJECTIVE: Deep brain stimulation (DBS) is an effective treatment for several movement disorders, including Parkinson\u27s disease (PD). While this treatment has been available for decades, studies on long-term patient outcomes have been limited. Here, the authors examined survival and long-term outcomes of PD patients treated with DBS. METHODS: The authors conducted a retrospective analysis using medical records of their patients to identify the first 400 consecutive patients who underwent DBS implantation at their institution from 1999 to 2007. The medical record was used to obtain baseline demographics and neurological status. The authors performed survival analyses using Kaplan-Meier estimation and multivariate regression using Cox proportional hazards modeling. Telephone surveys were used to determine long-term outcomes. RESULTS: Demographics for the cohort of patients with PD (n = 320) were as follows: mean age of 61 years, 70% male, 27% of patients had at least 1 medical comorbidity (coronary artery disease, congestive heart failure, diabetes mellitus, atrial fibrillation, or deep vein thrombosis). Kaplan-Meier survival analysis on a subset of patients with at least 10 years of follow-up (n = 200) revealed a survival probability of 51% (mean age at death 73 years). Using multivariate regression, the authors found that age at implantation (HR 1.02, p = 0.01) and male sex (HR 1.42, p = 0.02) were predictive of reduced survival. Number of medical comorbidities was not significantly associated with survival (p \u3e 0.5). Telephone surveys were completed by 40 surviving patients (mean age 55.1 ± 6.4 years, 72.5% male, 95% subthalamic nucleus DBS, mean follow-up 13.0 ± 1.7 years). Tremor responded best to DBS (72.5% of patients improved), while other motor symptoms remained stable. Ability to conduct activities of daily living (ADLs) remained stable (dressing, 78% of patients; running errands, 52.5% of patients) or worsened (preparing meals, 50% of patients). Patient satisfaction, however, remained high (92.5% happy with DBS, 95% would recommend DBS, and 75% felt it provided symptom control). CONCLUSIONS: DBS for PD is associated with a 10-year survival rate of 51%. Survey data suggest that while DBS does not halt disease progression in PD, it provides durable symptomatic relief and allows many individuals to maintain ADLs over long-term follow-up greater than 10 years. Furthermore, patient satisfaction with DBS remains high at long-term follow-up

    Factors associated with increased survival after surgical resection of glioblastoma in octogenarians.

    No full text
    Elderly patients with glioblastoma represent a clinical challenge for neurosurgeons and oncologists. The data available on outcomes of patients greater than 80 undergoing resection is limited. In this study, factors linked to increased survival in patients over the age of 80 were analyzed. A retrospective chart review of all patients over the age of 80 with a new diagnosis of glioblastoma and who underwent surgical resection with intent for maximal resection were examined. Patients who had only stereotactic biopsies were excluded. Immunohistochemical expression of oncogenic drivers (p53, EGFR, IDH-1) and a marker of cell proliferation (Ki-67 index) performed upon routine neuropathological examination were recorded. Stepwise logistic regression and Kaplan Meier survival curves were plotted to determine correlations to overall survival. Fifty-eight patients fit inclusion criteria with a mean age of 83 (range 80-93 years). The overall median survival was 4.2 months. There was a statistically significant correlation between Karnofsky Performance Status (KPS) and overall survival (P < 0.05). There was a significantly longer survival among patients undergoing either radiation alone or radiation and chemotherapy compared to those who underwent no postoperative adjuvant therapy (p < 0.05). There was also an association between overall survival and lack of p53 expression (p < 0.001) and lack of EGFR expression (p <0.05). In this very elderly population, overall survival advantage was conferred to those with higher preoperative KPS, postoperative adjuvant therapy, and lack of protein expression of EGFR and p53. These findings may be useful in clinical decision analysis for management of patients with glioblastoma who are octogenarians, and also validate the critical role of EGFR and p53 expression in oncogenesis, particularly with advancing age

    Tractography-Based Surgical Targeting for Thalamic Deep Brain Stimulation: A Comparison of Probabilistic vs Deterministic Fiber Tracking of the Dentato-Rubro-Thalamic Tract

    No full text
    BACKGROUND: The ventral intermediate (VIM) thalamic nucleus is the main target for the surgical treatment of refractory tremor. Initial targeting traditionally relies on atlas-based stereotactic targeting formulas, which only minimally account for individual anatomy. Alternative approaches have been proposed, including direct targeting of the dentato-rubro-thalamic tract (DRTT), which, in clinical settings, is generally reconstructed with deterministic tracking. Whether more advanced probabilistic techniques are feasible on clinical-grade magnetic resonance acquisitions and lead to enhanced reconstructions is poorly understood. OBJECTIVE: To compare DRTT reconstructed with deterministic vs probabilistic tracking. METHODS: This is a retrospective study of 19 patients with essential tremor who underwent deep brain stimulation (DBS) with intraoperative neurophysiology and stimulation testing. We assessed the proximity of the DRTT to the DBS lead and to the active contact chosen based on clinical response. RESULTS: In the commissural plane, the deterministic DRTT was anterior (P \u3c 10-4) and lateral (P \u3c 10-4) to the DBS lead. By contrast, although the probabilistic DRTT was also anterior to the lead (P \u3c 10-4), there was no difference in the mediolateral dimension (P = .5). Moreover, the 3-dimensional Euclidean distance from the active contact to the probabilistic DRTT was smaller vs the distance to the deterministic DRTT (3.32 ± 1.70 mm vs 5.01 ± 2.12 mm; P \u3c 10-4). CONCLUSION: DRTT reconstructed with probabilistic fiber tracking was superior in spatial proximity to the physiology-guided DBS lead and to the empirically chosen active contact. These data inform strategies for surgical targeting of the VIM
    corecore