132 research outputs found

    Quality and Safety Aspects of Infant Nutrition

    Get PDF
    Quality and safety aspects of infant nutrition are of key importance for child health, but oftentimes they do not get much attention by health care professionals whose interest tends to focus on functional benefits of early nutrition. Unbalanced diets and harmful food components induce particularly high risks for untoward effects in infants because of their rapid growth, high nutrient needs, and their typical dependence on only one or few foods during the first months of life. The concepts, standards and practices that relate to infant food quality and safety were discussed at a scientific workshop organized by the Child Health Foundation and the Early Nutrition Academy jointly with the European Society for Paediatric Gastroenterology, Hepatology and Nutrition, and a summary is provided here. The participants reviewed past and current issues on quality and safety, the role of different stakeholders, and recommendations to avert future issues. It was concluded that a high level of quality and safety is currently achieved, but this is no reason for complacency. The food industry carries the primary responsibility for the safety and suitability of their products, including the quality of composition, raw materials and production processes. Introduction of new or modified products should be preceded by a thorough science based review of suitability and safety by an independent authority. Food safety events should be managed on an international basis. Global collaboration of food producers, food-safety authorities, paediatricians and scientists is needed to efficiently exchange information and to best protect public health. Copyright (C) 2012 S. Karger AG, Base

    Linkage mapping bovine EST-based SNP

    Get PDF
    BACKGROUND: Existing linkage maps of the bovine genome primarily contain anonymous microsatellite markers. These maps have proved valuable for mapping quantitative trait loci (QTL) to broad regions of the genome, but more closely spaced markers are needed to fine-map QTL, and markers associated with genes and annotated sequence are needed to identify genes and sequence variation that may explain QTL. RESULTS: Bovine expressed sequence tag (EST) and bacterial artificial chromosome (BAC)sequence data were used to develop 918 single nucleotide polymorphism (SNP) markers to map genes on the bovine linkage map. DNA of sires from the MARC reference population was used to detect SNPs, and progeny and mates of heterozygous sires were genotyped. Chromosome assignments for 861 SNPs were determined by twopoint analysis, and positions for 735 SNPs were established by multipoint analyses. Linkage maps of bovine autosomes with these SNPs represent 4585 markers in 2475 positions spanning 3058 cM . Markers include 3612 microsatellites, 913 SNPs and 60 other markers. Mean separation between marker positions is 1.2 cM. New SNP markers appear in 511 positions, with mean separation of 4.7 cM. Multi-allelic markers, mostly microsatellites, had a mean (maximum) of 216 (366) informative meioses, and a mean 3-lod confidence interval of 3.6 cM Bi-allelic markers, including SNP and other marker types, had a mean (maximum) of 55 (191) informative meioses, and were placed within a mean 8.5 cM 3-lod confidence interval. Homologous human sequences were identified for 1159 markers, including 582 newly developed and mapped SNP. CONCLUSION: Addition of these EST- and BAC-based SNPs to the bovine linkage map not only increases marker density, but provides connections to gene-rich physical maps, including annotated human sequence. The map provides a resource for fine-mapping quantitative trait loci and identification of positional candidate genes, and can be integrated with other data to guide and refine assembly of bovine genome sequence. Even after the bovine genome is completely sequenced, the map will continue to be a useful tool to link observable phenotypes and animal genotypes to underlying genes and molecular mechanisms influencing economically important beef and dairy traits

    A genome scan for milk production traits in dairy goats reveals two new mutations in <i>Dgat1</i> reducing milk fat content

    Get PDF
    The quantity of milk and milk fat and proteins are particularly important traits in dairy livestock. However, little is known about the regions of the genome that influence these traits in goats. We conducted a genome wide association study in French goats and identified 109 regions associated with dairy traits. For a major region on chromosome 14 closely associated with fat content, the Diacylglycerol O-Acyltransferase 1 (DGAT1) gene turned out to be a functional and positional candidate gene. The caprine reference sequence of this gene was completed and 29 polymorphisms were found in the gene sequence, including two novel exonic mutations: R251L and R396W, leading to substitutions in the protein sequence. The R251L mutation was found in the Saanen breed at a frequency of 3.5% and the R396W mutation both in the Saanen and Alpine breeds at a frequencies of 13% and 7% respectively. The R396W mutation explained 46% of the genetic variance of the trait, and the R251L mutation 6%. Both mutations were associated with a notable decrease in milk fat content. Their causality was then demonstrated by a functional test. These results provide new knowledge on the genetic basis of milk synthesis and will help improve the management of the French dairy goat breeding program

    ADAM17 Deletion in Thymic Epithelial Cells Alters Aire Expression without Affecting T Cell Developmental Progression

    Get PDF
    Cellular interactions between thymocytes and thymic stromal cells are critical for normal T cell development. Thymic epithelial cells (TECs) are important stromal niche cells that provide essential growth factors, cytokines, and present self-antigens to developing thymocytes. The identification of genes that mediate cellular crosstalk in the thymus is ongoing. One candidate gene, Adam17, encodes a metalloprotease that functions by cleaving the ectodomain of several transmembrane proteins and regulates various developmental processes. In conventional Adam17 knockout mice, a non-cell autonomous role for ADAM17 in adult T cell development was reported, which strongly suggested that expression of ADAM17 in TECs was required for normal T cell development. However, knockdown of Adam17 results in multisystem developmental defects and perinatal lethality, which has made study of the role of Adam17 in specific cell types difficult. Here, we examined T cell and thymic epithelial cell development using a conditional knockout approach.We generated an Adam17 conditional knockout mouse in which floxed Adam17 is deleted specifically in TECs by Cre recombinase under the control of the Foxn1 promoter. Normal T cell lineage choice and development through the canonical αβ T cell stages was observed. Interestingly, Adam17 deficiency in TECs resulted in reduced expression of the transcription factor Aire. However, no alterations in the patterns of TEC phenotypic marker expression and thymus morphology were noted.In contrast to expectation, our data clearly shows that absence of Adam17 in TECs is dispensable for normal T cell development. Differentiation of TECs is also unaffected by loss of Adam17 based on phenotypic markers. Surprisingly, we have uncovered a novel genetic link between Adam17and Aire expression in vivo. The cell type in which ADAM17 mediates its non-cell autonomous impact and the mechanisms by which it regulates intrathymic T cell development remain to be identified

    Histological Evaluation of Diabetic Neurodegeneration in the Retina of Zucker Diabetic Fatty (ZDF) Rats

    Get PDF
    In diabetes, retinal dysfunctions exist prior to clinically detectable vasculopathy, however the pathology behind these functional deficits is still not fully established. Previously, our group published a detailed study on the retinal histopathology of type 1 diabetic (T1D) rat model, where specific alterations were detected. Although the majority of human diabetic patients have type 2 diabetes (T2D), similar studies on T2D models are practically absent. To fill this gap, we examined Zucker Diabetic Fatty (ZDF) rats - a model for T2D - by immunohistochemistry at the age of 32 weeks. Glial reactivity was observed in all diabetic specimens, accompanied by an increase in the number of microglia cells. Prominent outer segment degeneration was detectable with changes in cone opsin expression pattern, without a decrease in the number of labelled elements. The immunoreactivity of AII amacrine cells was markedly decreased and changes were detectable in the number and staining of some other amacrine cell subtypes, while most other cells examined did not show any major alterations. Overall, the retinal histology of ZDF rats shows a surprising similarity to T1D rats indicating that despite the different evolution of the disease, the neuroretinal cells affected are the same in both subtypes of diabetes

    Induction of IFN-β and the Innate Antiviral Response in Myeloid Cells Occurs through an IPS-1-Dependent Signal That Does Not Require IRF-3 and IRF-7

    Get PDF
    Interferon regulatory factors (IRF)-3 and IRF-7 are master transcriptional factors that regulate type I IFN gene (IFN-α/β) induction and innate immune defenses after virus infection. Prior studies in mice with single deletions of the IRF-3 or IRF-7 genes showed increased vulnerability to West Nile virus (WNV) infection. Whereas mice and cells lacking IRF-7 showed reduced IFN-α levels after WNV infection, those lacking IRF-3 or IRF-7 had relatively normal IFN-b production. Here, we generated IRF-3−/−× IRF-7−/− double knockout (DKO) mice, analyzed WNV pathogenesis, IFN responses, and signaling of innate defenses. Compared to wild type mice, the DKO mice exhibited a blunted but not abrogated systemic IFN response and sustained uncontrolled WNV replication leading to rapid mortality. Ex vivo analysis showed complete ablation of the IFN-α response in DKO fibroblasts, macrophages, dendritic cells, and cortical neurons and a substantial decrease of the IFN-β response in DKO fibroblasts and cortical neurons. In contrast, the IFN-β response was minimally diminished in DKO macrophages and dendritic cells. However, pharmacological inhibition of NF-κB and ATF-2/c-Jun, the two other known components of the IFN-β enhanceosome, strongly reduced IFN-β gene transcription in the DKO dendritic cells. Finally, a genetic deficiency of IPS-1, an adaptor involved in RIG-I- and MDA5-mediated antiviral signaling, completely abolished the IFN-β response after WNV infection. Overall, our experiments suggest that, unlike fibroblasts and cortical neurons, IFN-β gene regulation after WNV infection in myeloid cells is IPS-1-dependent but does not require full occupancy of the IFN-β enhanceosome by canonical constituent transcriptional factors

    Impaired Inflammatory Responses in Murine Lrrk2-Knockdown Brain Microglia

    Get PDF
    LRRK2, a Parkinson's disease associated gene, is highly expressed in microglia in addition to neurons; however, its function in microglia has not been evaluated. Using Lrrk2 knockdown (Lrrk2-KD) murine microglia prepared by lentiviral-mediated transfer of Lrrk2-specific small inhibitory hairpin RNA (shRNA), we found that Lrrk2 deficiency attenuated lipopolysaccharide (LPS)-induced mRNA and/or protein expression of inducible nitric oxide synthase, TNF-α, IL-1β and IL-6. LPS-induced phosphorylation of p38 mitogen-activated protein kinase and stimulation of NF-κB-responsive luciferase reporter activity was also decreased in Lrrk2-KD cells. Interestingly, the decrease in NF-κB transcriptional activity measured by luciferase assays appeared to reflect increased binding of the inhibitory NF-κB homodimer, p50/p50, to DNA. In LPS-responsive HEK293T cells, overexpression of the human LRRK2 pathologic, kinase-active mutant G2019S increased basal and LPS-induced levels of phosphorylated p38 and JNK, whereas wild-type and other pathologic (R1441C and G2385R) or artificial kinase-dead (D1994A) LRRK2 mutants either enhanced or did not change basal and LPS-induced p38 and JNK phosphorylation levels. However, wild-type LRRK2 and all LRRK2 mutant variants equally enhanced NF-κB transcriptional activity. Taken together, these results suggest that LRRK2 is a positive regulator of inflammation in murine microglia, and LRRK2 mutations may alter the microenvironment of the brain to favor neuroinflammation

    Guidelines for autopsy investigation of sudden cardiac death: 2017 update from the Association for European Cardiovascular Pathology.

    Get PDF
    Although sudden cardiac death (SCD) is one of the most important modes of death in Western countries, pathologists and public health physicians have not given this problem the attention it deserves. New methods of preventing potentially fatal arrhythmias have been developed and the accurate diagnosis of the causes of SCD is now of particular importance. Pathologists are responsible for determining the precise cause and mechanism of sudden death but there is still considerable variation in the way in which they approach this increasingly complex task. The Association for European Cardiovascular Pathology has developed these guidelines, which represent the minimum standard that is required in the routine autopsy practice for the adequate investigation of SCD. The present version is an update of our original article, published 10 years ago. This is necessary because of our increased understanding of the genetics of cardiovascular diseases, the availability of new diagnostic methods, and the experience we have gained from the routine use of the original guidelines. The updated guidelines include a detailed protocol for the examination of the heart and recommendations for the selection of histological blocks and appropriate material for toxicology, microbiology, biochemistry, and molecular investigation. Our recommendations apply to university medical centers, regionals hospitals, and all healthcare professionals practicing pathology and forensic medicine. We believe that their adoption throughout Europe will improve the standards of autopsy practice, allow meaningful comparisons between different communities and regions, and permit the identification of emerging patterns of diseases causing SCD. Finally, we recommend the development of regional multidisciplinary networks of cardiologists, geneticists, and pathologists. Their role will be to facilitate the identification of index cases with a genetic basis, to screen appropriate family members, and ensure that appropriate preventive strategies are implemented

    Estimated breeding values and association mapping for persistency and total milk yield using natural cubic smoothing splines

    Get PDF
    BackgroundFor dairy producers, a reliable description of lactation curves is a valuable tool for management and selection. From a breeding and production viewpoint, milk yield persistency and total milk yield are important traits. Understanding the genetic drivers for the phenotypic variation of both these traits could provide a means for improving these traits in commercial production.MethodsIt has been shown that Natural Cubic Smoothing Splines (NCSS) can model the features of lactation curves with greater flexibility than the traditional parametric methods. NCSS were used to model the sire effect on the lactation curves of cows. The sire solutions for persistency and total milk yield were derived using NCSS and a whole-genome approach based on a hierarchical model was developed for a large association study using single nucleotide polymorphisms (SNP).ResultsEstimated sire breeding values (EBV) for persistency and milk yield were calculated using NCSS. Persistency EBV were correlated with peak yield but not with total milk yield. Several SNP were found to be associated with both traits and these were used to identify candidate genes for further investigation.ConclusionNCSS can be used to estimate EBV for lactation persistency and total milk yield, which in turn can be used in whole-genome association studies.Klara L. Verbyla and Arunas P. Verbyl
    corecore