3,650 research outputs found

    Identifying Tennessee school-based agricultural education student growth and program accountability metrics

    Get PDF
    Over the years, accountability in education has transformed from the primary focus being the school as a whole to the individual teacher. The purpose of this study was to determine the metrics Tennessee school-based agricultural education teachers perceive as indicators of excellent total programs (classroom instruction, FFA, SAE), and a modified Delphi study was used to seek a consensus. The following nine metrics were retained: (a) pesticide certification, (b) program of activities, (c) number of students participating in CDEs, (d) chapter community service hours, (e) total number of FFA activities, (f) number of CDEs coached, (g) at least one proficiency at regional level, (h) one American degree every 3 years, and (i) percentage of students with SAE. Overall, the metrics agreed upon are narrow in focus and all but one is a record of activity and not direct measures of students’ knowledge or skills. As a result, the measures do not include student growth or value-added scores or authentic assessments of 21st century skills. Additional research is needed to further investigate the metrics that should be used to measure a school-based agricultural education program’s success in Tennessee and across the nation

    A Vehicular Traffic Flow Model Based on a Stochastic Acceleration Process

    Full text link
    A new vehicular traffic flow model based on a stochastic jump process in vehicle acceleration and braking is introduced. It is based on a master equation for the single car probability density in space, velocity and acceleration with an additional vehicular chaos assumption and is derived via a Markovian ansatz for car pairs. This equation is analyzed using simple driver interaction models in the spatial homogeneous case. Velocity distributions in stochastic equilibrium, together with the car density dependence of their moments, i.e. mean velocity and scattering and the fundamental diagram are presented.Comment: 27 pages, 6 figure

    Plasma arginine vasopressin concentrations in epileptics under monotherapy

    Get PDF
    Plasma arginine vasopressin concentrations were determined by radio-immunoassay in 112 adult epileptics who were taking carbamazepine, phenytoin, primidone, or sodium valproate in long-term monotherapy, and in 19 controls. No significant difference was found between the groups, but some epileptics taking carbamazepine and primidone showed low values. Serum concentrations of carbamazepine did not correlate with the concentrations of plasma arginine vasopressin. In conclusion, there was no evidence of a stimulating effect of chronic carbamazepine medication or a special inhibiting effect of phenytoin on the release of vasopressin arginine from the posterior pituitary

    Heat shock proteins and regulatory T cells

    Get PDF
    Heat shock proteins (HSPs) are important molecules required for ideal protein function. Extensive research on the functional properties of HSPs indicates that HSPs may be implicated in a wide range of physiological functions including immune function. In the immune system, HSPs are involved in cell proliferation, differentiation, cytokine release, and apoptosis. Therefore, the ability of the immune system, in particular immune cells, to function optimally and in unison with other physiological systems is in part dependent on signaling transduction processes, including bidirectional communication with HSPs. Regulatory T cells (Tregs) are important T cells with suppressive functions and impairments in their function have been associated with a number of autoimmune disorders. The purpose of this paper is to examine the relationship between HSPs and Tregs. The interrelationship between cells and proteins may be important in cellular functions necessary for cell survival and expansion during diseased state

    FBG-based optical interface to support a multisector antenna in a spectrally efficient fiber radio system

    Get PDF
    We propose and demonstrate a fiber Bragg grating (FBG)-based optical interface for use in a spectrally efficient fiber-radio network with multisector antennas. The system has the novel feature of being specifically developed for use in existing wavelength-division-multiplexed network infrastructures. The proposed scheme supports transport of a remote local oscillator (LO) and three subcarrier multiplexed data channels, destined for different antenna sectors, using a single wavelength. The composite signal was contained within a 25-GHz band, selected via a 25-GHz dispersion-flattened FBG. Recovery of the LO and data channels is performed via optical filtering, using either a novel single grating incorporating multiple phase shifts or multiple narrow bandwidth gratings. Our measurements show that all channels within the 25-GHz band are successfully recovered with less than 2-dB optical power penalty between channels. The use of the 25-GHz grating exhibits an improvement in sensitivity of 3 dB for all data channels

    Deep roots and soil structure

    Get PDF
    In this opinion article we examine the relationship between penetrometer resistance and soil depth in the field. Assuming that root growth is inhibited at penetrometer resistances > 2.5 MPa, we conclude that in most circumstances the increases in penetrometer resistance with depth are sufficiently great to confine most deep roots to elongating in existing structural pores. We suggest that deep rooting is more likely related to the interaction between root architecture and soil structure than it is to the ability of a root to deform strong soil. Although the ability of roots to deform strong soil is an important trait, we propose it is more closely related to root exploration of surface layers than deep rooting

    Multimessenger parameter inference of gravitational-wave and electromagnetic observations of white dwarf binaries

    Get PDF
    The upcoming Laser Interferometer Space Antenna (LISA) will detect a large gravitational-wave foreground of Galactic white dwarf binaries. These sources are exceptional for their probable detection at electromagnetic wavelengths, some long before LISA flies. Studies in both gravitational and electromagnetic waves will yield strong constraints on system parameters not achievable through measurements of one messenger alone. In this work, we present a Bayesian inference pipeline and simulation suite in which we study potential constraints on binaries in a variety of configurations. We show how using LISA detections and parameter estimation can significantly improve constraints on system parameters when used as a prior for the electromagnetic analyses. We also provide rules of thumb for how current measurements will benefit from LISA measurements in the future.Comment: 8 pages, 5 figures, accepted to MNRA

    Evaluation of stem rot in 339 Bornean tree species: implications of size, taxonomy, and soil-related variation for aboveground biomass estimates

    Get PDF
    Fungal decay of heart wood creates hollows and areas of reduced wood density within the stems of living trees known as stem rot. Although stem rot is acknowledged as a source of error in forest aboveground biomass (AGB) estimates, there are few data sets available to evaluate the controls over stem rot infection and severity in tropical forests. Using legacy and recent data from 3180 drilled, felled, and cored stems in mixed dipterocarp forests in Sarawak, Malaysian Borneo, we quantified the frequency and severity of stem rot in a total of 339 tree species, and related variation in stem rot with tree size, wood density, taxonomy, and species’ soil association, as well as edaphic conditions. Predicted stem rot frequency for a 50 cm tree was 53% of felled, 39% of drilled, and 28% of cored stems, demonstrating differences among methods in rot detection ability. The percent stem volume infected by rot, or stem rot severity, ranged widely among trees with stem rot infection (0.1–82.8 %) and averaged 9% across all trees felled. Tree taxonomy explained the greatest proportion of variance in both stem rot frequency and severity among the predictors evaluated in our models. Stem rot frequency, but not severity, increased sharply with tree diameter, ranging from 13% in trees 10–30 cm DBH to 54%in stems ≥ 50 cm DBH across all data sets. The frequency of stem rot increased significantly in soils with low pH and cation concentrations in topsoil, and stem rot was more common in tree species associated with dystrophic sandy soils than with nutrient-rich clays. When scaled to forest stands, the maximum percent of stem biomass lost to stem rot varied significantly with soil properties, and we estimate that stem rot reduces total forest AGB estimates by up to 7% relative to what would be predicted assuming all stems are composed strictly of intact wood. This study demonstrates not only that stem rot is likely to be a significant source of error in forest AGB estimation, but also that it strongly covaries with tree size, taxonomy, habitat association, and soil resources, underscoring the need to account for tree community composition and edaphic variation in estimating carbon storage in tropical forests
    corecore