4 research outputs found

    Summit of the N=40 Island of Inversion: precision mass measurements and ab initio calculations of neutron-rich chromium isotopes

    Full text link
    Mass measurements continue to provide invaluable information for elucidating nuclear structure and scenarios of astrophysical interest. The transition region between the Z=20Z = 20 and 2828 proton shell closures is particularly interesting due to the onset and evolution of nuclear deformation as nuclei become more neutron rich. This provides a critical testing ground for emerging ab-initio nuclear structure models. Here, we present high-precision mass measurements of neutron-rich chromium isotopes using the sensitive electrostatic Multiple-Reflection Time-Of-Flight Mass Spectrometer (MR-TOF-MS) at TRIUMF's Ion Trap for Atomic and Nuclear Science (TITAN) facility. Our high-precision mass measurements of 59,61−63^{59, 61-63}Cr confirm previous results, and the improved precision in measurements of 64−65^{64-65}Cr refine the mass surface beyond N=40. With the ab initio in-medium similarity renormalization group, we examine the trends in collectivity in chromium isotopes and give a complete picture of the N=40 island of inversion from calcium to nickel.Comment: 12 pages, 7 figure

    Mapping the N=40 island of inversion: Precision mass measurements of neutron-rich Fe isotopes

    Get PDF
    International audienceNuclear properties across the chart of nuclides are key to improving and validating our understanding of the strong interaction in nuclear physics. We present high-precision mass measurements of neutron-rich Fe isotopes performed at the TITAN facility. The multiple-reflection time-of-flight mass spectrometer (MR-ToF-MS), achieving a resolving power greater than 600000 for the first time, enabled the measurement of Fe63–70, including first-time high-precision direct measurements (δm/m≈10−7) of Fe68–70, as well as the discovery of a long-lived isomeric state in Fe69. These measurements are accompanied by both mean-field and ab initio calculations using the most recent realizations which enable theoretical assignment of the spin-parities of the Fe69 ground and isomeric states. Together with mean-field calculations of quadrupole deformation parameters for the Fe isotope chain, these results benchmark a maximum of deformation in the N=40 island of inversion in Fe and shed light on trends in level densities indicated in the newly refined mass surface

    Summit of the N=40 Island of Inversion: precision mass measurements and ab initio calculations of neutron-rich chromium isotopes

    Get PDF
    International audienceMass measurements continue to provide invaluable information for elucidating nuclear structure and scenarios of astrophysical interest. The transition region between the Z=20Z = 20 and 2828 proton shell closures is particularly interesting due to the onset and evolution of nuclear deformation as nuclei become more neutron rich. This provides a critical testing ground for emerging ab-initio nuclear structure models. Here, we present high-precision mass measurements of neutron-rich chromium isotopes using the sensitive electrostatic Multiple-Reflection Time-Of-Flight Mass Spectrometer (MR-TOF-MS) at TRIUMF's Ion Trap for Atomic and Nuclear Science (TITAN) facility. Our high-precision mass measurements of 59,61−63^{59, 61-63}Cr confirm previous results, and the improved precision in measurements of 64−65^{64-65}Cr refine the mass surface beyond N=40. With the ab initio in-medium similarity renormalization group, we examine the trends in collectivity in chromium isotopes and give a complete picture of the N=40 island of inversion from calcium to nickel

    Laser-induced breakdown spectroscopy in Asia

    No full text
    corecore