29 research outputs found

    Electrochemical Engineering of All-Vanadium Redox Flow Batteries for Reduced Ionic and Water Crossover via Experimental Diagnostics and Multiscale Modeling

    Get PDF
    Scalable and open architecture of redox flow batteries (RFBs) is a promising solution for large-scale energy storage. Among many chemistries developed for RFBs, all-vanadium redox flow batteries (VRFBs) currently show great potential for widespread commercialization. VRFBs utilize vanadium ions with different oxidation states in the negative and positive electrolytes; this characteristic frees them from irreversible capacity decay as a function of electroactive species transport through the membrane (i.e. crossover). However, crossover of vanadium ions and water during the charge/discharge cycling not only results in a lost discharge capacity, but also has real-time influence on the cell performance.Several parameters affect solute and solvent crossover during cycling. In this dissertation, experimental data along with multiscale computational modeling tailored to quantify the contributions to capacity decay stemming from ion-exchange membrane properties (e.g. equivalent weight and degree of reinforcement), flow field design, electrolyte properties, and operating conditions. A major focus has been to understand the effect of the electrode/membrane interface on the capacity decay and contact resistance. Novel ex-situ conductivity cells have been devised to assess ionic conductivity of the ion-exchange membranes along with electrolytes leading to details on the impact of interfacial phenomena on ionic conductivity and crossover.To quantify the long-term influence of crossover, a unique set-up (we call it IonCrG: Ionic Crossover Gauge) was built and fabricated enabling real-time measurement of the ionic transport across the polymeric membrane using ultraviolet-visible (UV/Vis) spectroscopy. The IonCrG enables separation of contributions to crossover emerging from concentration and electrostatic potential gradients. To investigate the instantaneous impact of crossover on the performance, a real-time current density distribution diagnostic has been implemented for measuring the in-plane current density distribution.The insights gained from this suite of experimental diagnostics and multiscale modeling have inspired design of systems with enhanced performance and greatly decreased crossover losses. Novel cell topologies along with asymmetric electrolyte compositions were designed and engineered for mitigating the ionic crossover during the operation of VRFBs. The cell architecture as well as the electrolyte configuration proposed in this dissertation provides an inexpensive and passive solution for retaining capacity during extended cycling of aqueous RFBs

    Fabrication of Inorganic Coatings Incorporated with Functionalized Graphene Oxide Nanosheets for Improving Fire Retardancy of Wooden Substrates

    Get PDF
    Flame-retardant chemicals are frequently used within consumer products and can even be employed as a treatment on the surface of different types of materials (e.g., wood, steel, and textiles) to prevent fire or limit the rapid spread of flames. Functionalized graphene oxide (FGO) nanosheets are a promising construction coating nanomaterial that can be blended with sodium metasilicate and gypsum to reduce the flammability of construction buildings. In this work, we designed and fabricated novel and halogen-free FGO sheets using the modified Hummers method; and subsequently functionalized them by pentaerythritol through a chemical impregnation process before dispersing them within the construction coating. Scanning electron microscopic images confirm that the FGO-filled coating was uniformly dispersed on the surface of wooden substrates. We identified that the FGO content is a critical factor affecting the fire retardancy. Thermogravimetric analysis of the FGO coating revealed that higher char residue can be obtained at 700 °C. Based on the differential scanning calorimetry, the exothermic peak contained a temperature delay in the presence of FGO sheets, primarily due to the formation of a thermal barrier. Such a significant improvement in the flame retardancy confirms that the FGO nanosheets are superior nanomaterials to be employed as a flame-retardant construction coating nanomaterial for improving thermal management within buildings

    Thermal transport on composite thin films using graphene nanodots and polymeric binder

    Get PDF
    Abstract(#br)Series of composite thin films consisted of graphene nanodots (GNDs) and water-based binder (i.e., polyvinylpyrrolidone and polyvinyl alcohol) are designed and fabricated for nano-engineering devices with enhanced thermal and electrical conductivities. A thermal pyrolysis of citric acid and urea is adopted to synthesize crystalline GNDs under IR irradiation. The as-prepared GNDs are uniformly coated over three types of substrates including Cu foil, cotton cloth and filter paper. The GND thin films emit tunable fluorescence upon thermal treatment of GNDs at 400 °C in helium atmosphere. The thermally treated GND-based thin film exhibits excellent thermal as well as electrical conductivity compared to bare GNDs and reduced graphene oxide sheets. The enhanced conductivity is due to the reduced oxidation level induced by the thermal treatment on GNDs samples which subsequently decreases the photon scattering. With increasing weight loading, GNDs can serve not only as connective point but also as stuff, offering a well-developed conductive path for the heat dissipation. Accordingly, the design of GND thin film is promising for enhanced thermal management for electronic and photonic applications since it enables engineering the fluorescence emission with substantially increased thermal and electrical conductivities

    Fluorescence of functionalized graphene quantum dots prepared from infrared-assisted pyrolysis of citric acid and urea

    Get PDF
    Abstract(#br)This paper reports an efficient fabrication of N-doped graphene quantum dots (GQDs) showing controllable chemical and fluorescence (FL) properties through infrared carbonization (IRC) of citric acid and urea. The GQDs prefer to form an equilibrium shapes of circle with an average particle size ranged from 5 to 10 nm. The N/C atomic ratio in GQDs can be precisely tailored in a range from 21.6 to 49.6 at.% by simply controlling the weight ratio of citric acid to urea. With increasing the urea content, the GQDs not only contain N-doped graphene but also incorporate with crystalline cyanuric acid, forming a binary crystallinity. The quantum yield of 22.2% is achieved by N-doped GQDs, prepared from the IRC synthesis of chemical precursor at the citric acid/urea at 3:1. Excessive N and cyanuric acid can lead to FL quenching, red shift and wide spectral distribution. The design of GQDs possesses a multiple chromophoric band-gap structure, originated from the presence of cyanuric acid, defect-related emissive traps, and functional group distributions. This work offers an effective and inspiring approach to engineering both chemical compositions and unique crystalline structures of GQDs, and will therefore facilitate their fundamental research and applications to optical, sensing, energy and biological fields

    Influence of Membrane Equivalent Weight and Reinforcement on Ionic Species Crossover in All-Vanadium Redox Flow Batteries

    No full text
    One of the major sources of lost capacity in all-vanadium redox flow batteries (VRFBs) is the undesired transport (usually called crossover) of water and vanadium ions through the ion-exchange membrane. In this work, an experimental assessment of the impact of ion-exchange membrane properties on vanadium ion crossover and capacity decay of VRFBs has been performed. Two types of cationic membranes (non-reinforced and reinforced) with three equivalent weights of 800, 950 and 1100 g·mol−1 were investigated via a series of in situ performance and capacity decay tests along with ex situ vanadium crossover measurement and membrane characterization. For non-reinforced membranes, increasing the equivalent weight (EW) from 950 to 1100 g·mol−1 decreases the V(IV) permeability by ~30%, but increases the area-specific resistance (ASR) by ~16%. This increase in ASR and decrease in V(IV) permeability was accompanied by increased through-plane membrane swelling. Comparing the non-reinforced with reinforced membranes, membrane reinforcement increases ASR, but V(IV) permeability decreases. It was also shown that there exists a monotonic correlation between the discharge capacity decay over long-term cycling and V(IV) permeability values. Thus, V(IV) permeability is considered a representative diagnostic for assessing the overall performance of a particular ion-exchange membrane with respect to capacity fade in a VRFB

    Strategies on Visual Display Terminal Lighting in Office Space under Energy-Saving Environment

    No full text
    In this work, we have studied how the vertical illuminance of the human eye position, illuminance of the horizontal work surface, and the brightness of the computer screen in the office space lighting are correlated under an energy-saving environment. This investigation was conducted in a full-scale laboratory that simulates an office space with 20 adults. It was found that when the indoor ambient lighting illuminance changes, the vertical illuminance of the subject’s eye position is affected accordingly, and the two factors are strongly correlated. On the other hand, when the surrounding environment is brighter and the vertical illuminance increases, the illuminance of the horizontal working surface adjusted by the subject during the visual display terminal (VDT) operation is significantly reduced. The horizontal illuminance value can even be lower than the value frequently employed in various countries around the world, since the computer screen brightness will be adjusted accordingly. Therefore, in an energy-saving environment, the illuminance of the horizontal working surface and the brightness of the computer screen adjusted by the users will vary with the ambient lighting. Especially in the current mainstream VDT operating environment and within a certain range of conditions, the interior setting can be lower than the current horizontal illuminance benchmark for additional energy conservation

    Direct Measurement of Crossover and Interfacial Resistance of Ion-Exchange Membranes in All-Vanadium Redox Flow Batteries

    No full text
    Among various components commonly used in redox flow batteries (RFBs), the separator plays a significant role, influencing resistance to current as well as capacity decay via unintended crossover. It is well-established that the ohmic overpotential is dominated by the membrane and interfacial resistance in most aqueous RFBs. The ultimate goal of engineering membranes is to improve the ionic conductivity while keeping crossover at a minimum. One of the major issues yet to be addressed is the contribution of interfacial phenomena in the influence of ionic and water transport through the membrane. In this work, we have utilized a novel experimental system capable of measuring the ionic crossover in real-time to quantify the permeability of ionic species. Specifically, we have focused on quantifying the contributions from the interfacial resistance to ionic crossover. The trade-off between the mass and ionic transport impedance caused by the interface of the membranes has been addressed. The MacMullin number has been quantified for a series of electrolyte configurations and a correlation between the ionic conductivity of the contacting electrolyte and the Nafion® membrane has been established. The performance of individual ion-exchange membranes along with a stack of various separators have been explored. We have found that utilizing a stack of membranes is significantly beneficial in reducing the electroactive species crossover in redox flow batteries compared to a single membrane of the same fold thickness. For example, we have demonstrated that the utilization of five layers of Nafion® 211 membrane reduces the crossover by 37% while only increasing the area-specific resistance (ASR) by 15% compared to a single layer Nafion® 115 membrane. Therefore, the influence of interfacial impedance in reducing the vanadium ion crossover is substantially higher compared to a corresponding increase in ASR, indicating that mass and ohmic interfacial resistances are dissimilar. We have expanded our analysis to a combination of commercially available ion-exchange membranes and provided a design chart for membrane selection based on the application of interest (short duration/high-performance vs. long-term durability). The results of this study provide a deeper insight into the optimization of all-vanadium redox flow batteries (VRFBs)

    Synthesis and Characterization of Na3SbS4 Solid Electrolytes via Mechanochemical and Sintered Solid-State Reactions: A Comparative Study

    No full text
    A sulfide-based solid electrolyte is an enticing non-organic solid-state electrolyte developed under ambient conditions. Na3SbS4, a profoundly enduring substance capable of withstanding exceedingly elevated temperatures and pressures, emerges as a focal point. Within this investigation, we employ dual distinct techniques to fabricate Na3SbS4, encompassing ball milling and the combination of ball milling with sintering procedures. A remarkable ionic conductivity of 3.1 × 10−4 S/cm at room temperature (RT), coupled with a meager activation energy of 0.21 eV, is achieved through a bifurcated process, which is attributed to the presence of tetragonal Na3SbS4 (t-NSS). Furthermore, we delve into the electrochemical performance and cyclic longevity of the Na2/3Fe1/2Mn1/2O2|t-NSS|Na system within ambient environs. It reveals 160 mAh/g initial charge and 106 mAh/g discharge capacities at 0.01 A/g current density. Furthermore, a cycle life test conducted at 0.01 A/g over 30 cycles demonstrates stable and reliable performance. The capacity retention further highlights its enduring energy storage capabilities. This study underscores the sustainable potential of Na3SbS4 as a solid-state electrolyte for advanced energy storage systems

    Sodium Super Ionic Conductor-Type Hybrid Electrolytes for High Performance Lithium Metal Batteries

    No full text
    Composite solid electrolytes (CSEs), composed of sodium superionic conductor (NASICON)-type Li1+xAlxTi2‒x(PO4)3 (LATP), poly (vinylidene fluoride-hexafluoro propylene) (PVDF-HFP), and lithium bis (trifluoromethanesulfonyl)imide (LiTFSI) salt, are designed and fabricated for lithium-metal batteries. The effects of the key design parameters (i.e., LiTFSI/LATP ratio, CSE thickness, and carbon content) on the specific capacity, coulombic efficiency, and cyclic stability were systematically investigated. The optimal CSE configuration, superior specific capacity (~160 mAh g−1), low electrode polarization (~0.12 V), and remarkable cyclic stability (a capacity retention of 86.8%) were achieved during extended cycling (>200 cycles). In addition, with the optimal CSE structure, a high ionic conductivity (~2.83 × 10−4 S cm−1) was demonstrated at an ambient temperature. The CSE configuration demonstrated in this work can be employed for designing highly durable CSEs with enhanced ionic conductivity and significantly reduced interfacial electrolyte/electrode resistance

    Effect of Solvent on Fluorescence Emission from Polyethylene Glycol-Coated Graphene Quantum Dots under Blue Light Illumination

    No full text
    To explore aggregate-induced emission (AIE) properties, this study adopts a one-pot hydrothermal route for synthesizing polyethylene glycol (PEG)-coated graphene quantum dot (GQD) clusters, enabling the emission of highly intense photoluminescence under blue light illumination. The hydrothermal synthesis was performed at 300 °C using o-phenylenediamine as the nitrogen and carbon sources in the presence of PEG. Three different solvents, propylene glycol methyl ether acetate (PGMEA), ethanol, and water, were used for dispersing the PEG-coated GQDs, where extremely high fluorescent emission was achieved at 530–550 nm. It was shown that the quantum yield (QY) of PEG-coated GQD suspensions is strongly dependent on the solvent type. The pristine GQD suspension tends to be quenched (i.e., QY: ~1%) when dispersed in PGMEA (aggregation-caused quenching). However, coating GQD nanoparticles with polyethylene glycol results in substantial enhancement of the quantum yield. When investigating the photoluminescence emission from PEG-coated GQD clusters, the surface tension of the solvents was within the range of from 26.9 to 46.0 mN/m. This critical index can be tuned for assessing the transition point needed to activate the AIE mechanism which ultimately boosts the fluorescence intensity. The one-pot hydrothermal route established in this study can be adopted to engineer PEG-coated GQD clusters with solid-state PL emission capabilities, which are needed for next-generation optical, bio-sensing, and energy storage/conversion devices
    corecore