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Abstract: Flame-retardant chemicals are frequently used within consumer products and can even
be employed as a treatment on the surface of different types of materials (e.g., wood, steel, and
textiles) to prevent fire or limit the rapid spread of flames. Functionalized graphene oxide (FGO)
nanosheets are a promising construction coating nanomaterial that can be blended with sodium
metasilicate and gypsum to reduce the flammability of construction buildings. In this work, we
designed and fabricated novel and halogen-free FGO sheets using the modified Hummers method;
and subsequently functionalized them by pentaerythritol through a chemical impregnation process
before dispersing them within the construction coating. Scanning electron microscopic images
confirm that the FGO-filled coating was uniformly dispersed on the surface of wooden substrates.
We identified that the FGO content is a critical factor affecting the fire retardancy. Thermogravimetric
analysis of the FGO coating revealed that higher char residue can be obtained at 700 ◦C. Based on
the differential scanning calorimetry, the exothermic peak contained a temperature delay in the
presence of FGO sheets, primarily due to the formation of a thermal barrier. Such a significant
improvement in the flame retardancy confirms that the FGO nanosheets are superior nanomaterials
to be employed as a flame-retardant construction coating nanomaterial for improving thermal
management within buildings.

Keywords: fire retardancy; wooden substrate; graphene oxide sheets; construction coating; surface
functionalization

1. Introduction

Fire is extremely destructive in nature and can cause serious damage to our lives and
the community around us. Therefore, significant attention must be paid for improving
fire safety regulations to further reduce fire hazards associated with combustible materials
such as wood and textiles [1,2]. In recent years, numerous efforts have been dedicated to
developing fire-resistant technologies/materials. Thus, flame-retardant chemicals have
been employed in a variety of consumer products and adopted as a treatment on various
types of surfaces (e.g., textiles, plastics, resins) to prevent or limit the spread of fire [3–8]. In
essence, fuel, heat, oxygen, and free radical reactions are the four necessary components for
the combustion of any material [9,10]. Flame retardants are generally used as an additive
to polymers, fibers, and coating materials to increase their thermal stability and reduce
flammability. Flame retardants are thus activated by ignition sources and prevent the
growth of fire via eliminating/limiting any one of these key components [11].

Graphene sheets are two-dimensional (2D) nanocrystals with a single layer or several
atomic layers consisting of a sp2-bonded carbon structure [12,13]. Several prior applications
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of graphene nanomaterials have been successfully demonstrated for transparent conduct-
ing films [14], catalyst supports [15,16], flow batteries [17], lithium-ion batteries [18], and
electrochemical capacitors [19]. Because of ultra-high thermal stability, specific surface ad-
sorption, as well as strong adhesion capabilities, graphite-like carbons (e.g., flaky graphite
and functional graphene) can effectively alleviate heat and mass transfer [20–30]. The
layered lamellar structure of graphene forms a barrier layer [31], limiting oxygen access
along with reducing the heat transfer rate at the interface [32]. The graphene oxide (GO)
nanosheet, one of the carbon allotropes, is frequently exfoliated from the natural graphite
powders via chemical-wet exfoliation methods. The as-prepared GO sheets are usually
composed of a large amount of oxygen functionalities, such as carboxyl (C–OOH), carbonyl
(C=O), and hydroxyl (C–OH) groups [33]. It has already been reported that carbonyl and
carboxyl groups tend to bond to the edge sites of the graphene sheet, while hydroxyl and
epoxy groups are mostly attached to the basal planes [34]. The unique 2D carbon structure
can be extensively functionalized by polymers or other inorganic compounds, forming a
homogeneous fire retardant.

In this study, we report a novel, environmentally friendly, halogen-free, and low-
toxicity functionalized GO (FGO)-filled flame retardant on wooden substrates. To reduce
flammability, functionalized GO (FGO) nanosheet-filled construction coatings (including
sodium metasilicate + gypsum) were deposited on wooden substrates. An efficient and rela-
tively simple method was employed to functionalize the GO sheets through a chemical-wet
impregnation method in the presence of pentaerythritol. The FGO content was shown to be
a critical factor controlling the fire retardancy of the construction coatings on the wooden
surfaces. The direct heating test confirmed significantly enhanced anti-flammability charac-
teristics of the treated wooden substrates. During the combustion process, it was observed
that the surface dehydrates, while releasing multiple gases (i.e., CO2, H2O), ultimately
forms a char-like material that serves to protect the entire structure against the spread
of fire.

2. Experimental Section
2.1. Synthesis of FGO Sheets

The GO sheets were exfoliated from natural graphite (NG) powders made by the
modified Hummers method [35]. First, 5 g of NG powder was mixed with 120 mL of a
strong oxidizing agent (1 M KMnO4 and concentrated H2SO4) in an ice bath. The resulting
slurry was stirred continuously for 2 h, and the solution mixture was gradually heated
until it reached 98 ◦C and then was maintained at this temperature for 15 min. The graphite
slurry was then neutralized and went through several cycles of filtration and washing
steps. The GO powders were then prepared via drying the slurry at 105 ◦C in an oven
overnight. To prepare the FGO samples, the as-prepared GO sheets were functionalized by
the pentaerythritol (chemical formula: C5H12O4, molecular weight: 136.15 g/mol, boiling
point: 276 ◦C) through a chemical-wet impregnation. The chemical impregnation was
performed in an ultrasonic bath at ambient temperature for 1 h to finalize the surface
modification at the liquid phase.

2.2. Fireproof Performance of FGO-Filled Coatings

To examine the fire-retardant performance, the fireproof coating (including sodium
metasilicate + gypsum) mixed with different amounts of FGO sheets was coated over a
wooden plate. Herein, the wooden plates (i.e., three plywood) were carefully cut into
a rectangular shape (4 × 5 cm2) with an average thickness of ~8 mm. Five different
configurations, including 1, 3, 5, 7, and 9 wt% (i.e., the weight ratio of FGO sheets to the
construction coatings) were implemented for preparing the samples. To enhance uniformity,
the FGO-containing coatings were blended (for 10 min) using a three-dimensional mixer
that included the zirconia balls. The as-prepared slurries were then pasted onto the wooden
substrates with a doctor blade and dried at 40 ◦C in an oven overnight. The thickness of
the fireproof coatings was controlled at ~1.5 mm (i.e., averaged over five different readings
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at various locations, with a deviation of ~0.1 mm). Herein, the FGO sheets had a lower
apparent density (i.e., tap density: <1.0 g/cm3) compared to the other components present
in the fireproof coating. This reveals that higher FGO content does not strongly alter the
surface density of the nanocoatings. The flame retardancy of the construction coatings
on wooden plates was evaluated using a high-performance flamethrower. The distance
between the coating and the top of the flame was set at 5 cm, where the surface temperature
on the wooden plates was kept at 1100 ◦C. During fireproof testing, three thermocouples (K
type) were employed to measure the surface temperatures of the plates at various locations.
The test procedure adopted in this work was identical to the “BS 476: Part 7” standard for
examining the anti-flammability of the CaCO3 plates [36].

2.3. Materials’ Characterization

The morphology and structure of the FGO samples were characterized by field-
emission scanning electron microscope (FE-SEM, JEOL JSM-5600) and high-resolution
transmission electron microscope (HR-TEM, JEOL, JEM-2100). A thermos-gravimetric ana-
lyzer (TGA, Perkin Elmer TA7) and differential scanning calorimetry (DSC, TA Instrument
Q20) were adopted to explore the thermal stability as well as the calorimetric change of
FGO-filled coatings. A DSC measurement was carried out while heating the sample to
600 ◦C with a heating rate of 5 ◦C/min under an air atmosphere. The TGA analysis was
also implemented in air (flowrate: 20 mL/min) with a heating rate of 5 ◦C/min, ramping
from 50 ◦C to 700 ◦C.

3. Results and Discussion

Figure 1a,b shows the FE-SEM photographs of the resulting GO sheets with various
magnification rates. According to Figure 1, the GO powder forms a dense structure with
curled graphene-stacking sheets, generating a fluffy agglomeration. This suggests that
the modified Hummers method can produce two-dimensional GO nanosheets from the
chemical exfoliation of a NG precursor [37]. Based on the resulting GO structure, the FGO
sheets still maintained a similar morphology even after the surface functionalization of
the pentaerythritol, as depicted in Figure 1c,d. According to Figure 1, the FGO sheets
contain numerous nanovoids and nanocavities. HR-TEM analysis was performed to further
characterize the microstructures, as shown in the insets of Figure 1a,c. Herein, we observe
that the pristine GO sample is composed of curved monatomic or several-layered sheets,
confirming a layer-by-layer exfoliation process of the graphene sheets from the NG powders.
Upon surface functionalization, the FGO sheets still maintain their transparent silky shape
(~several square micrometers).

For consistency, throughout the entire paper, the FGO-filled construction coatings are
labeled as G1, G3, G5, G7, and G9, according to 1, 3, 5, 7, and 9 wt.% FGO content within the
fireproof layers, respectively. To explore the effect of surface functionalization, the fireproof
coating filled with pristine GO sheets (1 and 9 wt.%) was also prepared for the comparison,
as shown in Figure 2a,b, respectively. Herein, the fireproof coating had a roughened surface
due to the poor uniformity of GO sheets, mainly caused by the GO agglomeration. Several
cracks and GO agglomerates could be viewed on the surface structure, mainly due to low
surface coverage of the phenolic groups on the pristine GO sheets that does not severely
contribute to the hydrogen bonding between the sodium metasilicate and the pristine
sheets. The agglomeration on the composite’s fracture surface can be attributed to the poor
dispersion and weak interfacial interactions of the sodium metasilicate within the matrix.
In contrast, the fireproof coatings with the addition of 1 and 9 wt.% FGO sheets (i.e., G1
and G9 samples) displayed a smoother surface without any apparent roughness (please
see Figure 2c,d). This observation reveals that the incorporation of the FGO sheets via the
surface functionalization of pentaerythritol in sodium metasilicate + gypsum mixture (as
shown in Figure 3) leads to a homogeneous dispersion.
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Figure 1. FE-SEM images of GO sheets with (a) low and (b) high magnifications. The inset of
Figure 1a includes a HR-TEM micrograph of as-prepared GO sheets. FE-SEM images of FGO sheets
with (c) low and (b) high magnifications. The inset of Figure 1c shows a HR-TEM micrograph of
as-prepared FGO samples.
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Figure 3. Schematic diagram of FGO-filled fireproof coating consisting of sodium silicate, gyp-
sum powders, and FGO sheets, which were modified through the chemical-wet impregnation
of pentaerythritol.

As for the FGO-filled composite coatings, the strong hydrogen bond interaction among
FGO, gypsum (i.e., CaSO4·2H2O), and sodium metalsilicate (i.e., polymeric metasilicate
anions [–SiO2−

3–]n) tends to create homogeneously dispersed graphene sheets with strong
interfacial interactions on the surface structure. Such an improved dispersion and inter-
facial interactions enhances the mechanical stability (i.e., anti-scratch property). Further
increasing the FGO loading to 9 wt.% results in an even smoother layer with no obvious
agglomerates, confirming the formation of a well-developed graphene network. These
graphene nanostructures are capable of increasing the viscosity of a fireproof coating (sup-
pressing dripping during combustion), along with the char yield (protective barrier layer),
while restraining the flammability [38,39].

TGA analysis was also used to investigate the thermal degradation as well as the
char formation [40,41]. Herein, the fireproof coating filled with different loadings of
FGO sheets were subjected to a controlled temperature ramp from 50 to 700 ◦C at a
heating rate of 5 ◦C/min. The TGA experiment was carried out in air, as shown in
Figure 4a. The TGA curves for all the samples consist of three different thermal degra-
dation steps: (i) 100–200 ◦C (dehydration), (ii) 200–350 ◦C (ignition and decomposition),
and (iii) 550–700 ◦C (pyrolysis and degradation) [41]. Among all the samples, we observed
that the major weight loss took place during Stage (i) while liberating water vapor from
the mixture of gypsum + sodium metalsilicate (the weight loss at Stage (i) for all samples:
10–11 wt.%). The weight reduction during Stage (iii) can be attributed to the fact that
amorphous carbon has evolved and has a maximal gasification rate at around 550 ◦C,
whereas the maximum gasification rate of carbonaceous materials (graphite-like) occurs at
ca. 650 ◦C [42,43]. It is worth noting that the decomposition delays with increased FGO
content. It is generally recognized that the effectiveness of flame retardants can be evalu-
ated via analyzing the volatiles, and the resulting residue with increased temperature [44].
In comparison, the residual weight after the thermal oxidation at 700 ◦C demonstrated
the following order: G9 (63.8 wt.%) > G5 (59.8 wt.%) > G1 (57.5 wt.%). Accordingly, the
integration of FGO sheets improves the anti-flammability of construction coatings. This
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improved residual yield as well as the reduced mass loss rate can be attributed to the
addition of FGO sheets that facilitates the formation of an insulating layer within the com-
posite structure. Increasing the FGO content, highly stable FGO sheets generate a so-called
“tortuous path”, which further inhibits the release of volatile products and the mass/heat
exchange during the thermal degradation process [45,46]. Based on the TGA analysis, the
phenolic resin on the wooden fireproof coatings exhibits thermal degradation at 295–300 ◦C
(weight loss: ~20 wt.%), as well as the two-stage weight loss (i.e., 350–370 and 475–485 ◦C
with a weight loss: ~10 wt.%) under the nitrogen atmosphere. This weight loss is attributed
to the phenolic resin curing (i.e., diverging between the resin formulations) and the thermal
degradation [47]. The residual weight reaches ~48.3 wt.% after 700 ◦C, where the thermal
resistance is lower than that of FGO-filled fireproof coating (i.e., high inorganic content,
e.g., SiOx).
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Figure 4. (a) TGA and (b) DSC curves of 1 wt.%, 5 wt.%, and 9 wt.% FGO-filled fireproof coating.

To further explore this trend, DSC analysis was performed to examine the heat flux
as a function of temperature under a constant air flow, as depicted in Figure 4b. There
is an obvious exothermic peak for all the samples; however, this exothermic peak shows
a temperature lag with increased FGO content. The exothermic peaks take place at ap-
proximately 125 (G1), 142 (G5), and 175 ◦C (G9). Therefore, the thermal decomposition
of FGO-filled fireproof coating due to the trailing effect significantly alters the ignition
temperature [41]. Therefore, it can be deduced that the FGO sheets can serve as an effective
fire-retardant additive for tailing away the decomposition reactions.

Figure 5 shows two sets of digital photographs for the fireproof coatings filled with 1
and 9 wt.% FGO sheets on the wooden substrates, where the as-prepared wooden substrates
were heated to 1100 ◦C for 10 s. According to Figure 5, both samples contain obvious traces
of burning on their corresponding surface structure. Herein, the area fractions for the
pyrogenation (i.e., color: slight grey) and carbonization (i.e., color: black) can be considered
as a crucial indicator to evaluate the flame retardancy. When heating up to 1100 ◦C for 10 s,
the area fractions of pyrogenation and carbonization on the G1 sample were found to be
much larger (compared to the G9 sample). This reveals that the addition of FGO sheets
significantly alleviates the flame spreading and burning, decreasing both the pyrogenation
and carbonization areas. To extend the applicability of this approach, the FGO-filled paste
was also coated onto the stainless-steel foils to characterize the fireproof performance
(i.e., at 1100 ◦C for 40, 50, and 60 s). Similarly, both the pyrogenation and carbonization
areas reduced with increased FGO sheets, as shown in Figure 6. This observation also
demonstrates the importance of FGO content on the fireproof performance. In addition,
the FGO-filled coatings displayed excellent stability (without substantial weight loss and
good adhesion to the substrates) and durability (no peeling from the substrates upon water
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washing) even after storing them in air for 6 months. This functional coating also exhibited
superior thermal resistance and flame prevention (~1100 ◦C).
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steel foils, where the number represents the period of high-temperature flammability test at 1100 ◦C.
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Figure 7 shows the carbonization fraction as a decreasing function of FGO content
on wooden substrate after the flammability test was conducted at 1100 ◦C for 10 s. This
improved fire retardancy can be ascribed to the fact that the chemical decomposition rate
is retarded by the FGO filling within the composite coating. This trend also suggests
that the thermal-oxidative stability of the char residue can be markedly improved by the
introduction of FGO sheets, enhancing the fire resistance of the composite film [8,39,48]. It
is generally recognized that graphene enhances the heat transfer in the composite coating
and can also potentially decrease the thermal degradation temperature [49]. Indeed, the
heat release is greatly reduced by the surface loading of FGO sheets if dispersed uniformly
(see Figure 3). Since FGO sheets were well-dispersed in the fireproof coating, the resulting
FGO sheets significantly enhanced the fire retardancy under the forced flaming condition.
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Figure 7. Carbonization fraction as a function of FGO content on wooden plates.

Figure 8 illustrates variation of the carbonization fraction with the ignition time for
both FGO-filled fireproof coatings on a wooden plate and the stainless-steel foil. As shown
in Figure 8, both carbonization fractions were obviously alleviated with an increased FGO
content. In other words, the dispersive FGO sheets led to high-flame-retardant efficiency.
According to Figures 5 and 6, when the FGO loading was increased to 9 wt.%, the graphene
network combined with the sodium metasilicate + gypsum residues to form a close-grained
char layer with reduced holes and/or smaller cracks. The resulting composite film served
as an effective physical barrier to reduce the mass/heat exchange between the condensed
and gas phases and prevented the escape of volatiles, enhancing the flame retardancy [39].
As compared to the FGO sheets with lower loading, the embedded FGO network in the
resulting matrix imparted a higher melt viscosity while maintaining the shape of FGO-
filled fireproof coating (i.e., without melt spreading during the flame propagation) [39].
This interaction reveals that the contact area between the fuel (matrix) and fire for the
as-prepared composite coatings is insignificant and the fire transfer is effectively inhibited
with the help of a FGO-filled coating. Indeed, the FGO framework serves as a protective
and insulating barrier limiting heat and oxygen diffusion while protecting the underlying
wooden substrate [48]. Given its simplicity, ease of fabrication, scalability, and low cost, we
believe that the fireproof coating developed in this work has great potential for large-scale
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applications. Furthermore, our approach can be easily adopted to prepare composite thin
films on various types of substrates for fabricating novel flame-retardant coatings.
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Figure 8. Variation of carbonization fraction with ignition time for both FGO-filled fireproof coatings
on (a) the wooden plate and (b) stainless steel foil.

4. Conclusions

This work demonstrated an effective approach to functionalize GO sheets for improv-
ing the dispersion of FGO in the sodium metasilicate + gypsum matrix through a chemical
impregnation method. The resulting construction coatings on wooden plates and on the
stainless-steel foils displayed superior fireproof characteristics. Here, the influence of FGO
content on the fire retardancy of the construction coating was systematically investigated.
FE-SEM images showed that the FGO-filled coating was uniformly dispersed on the surface
of wooden substrates. TGA analysis of the FGO coating revealed that a high mass of char
residue can be obtained at 700 ◦C, indicating enhanced thermal insulating performance.
DSC analysis revealed that the appearance of the exothermic peak delayed with an increase
in the FGO sheets, mainly due to the formation of a thermal barrier reducing the heat trans-
fer. Accordingly, the FGO nanosheets can serve as an efficient coating nanomaterial for fire
protection of construction materials. Such a significant improvement in flame retardancy
suggests that FGO nanoparticles are excellent additives to flame-retardant construction
coatings, thanks to their high efficiency, pollutant reduction, non-toxicity, low cost, and
environmental friendliness.
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