161 research outputs found

    Fasciculate kleopatrinid corals from the Bashkirian (Late Carboniferous) of Sardar Formation (Ozbak-Kuh mountains, East-central Iran)

    Get PDF
    In the East-Central Iran, the Sardar Formation (upper Visean–Moscovian) consists of shallow-water limestone with intercalations of shale containing rugose corals, tabulate corals and brachiopods. Ten sections were sampled in the Ozbak-kuh Mountains, from north to south. Among the rugose corals, an assemblage of fasciculate Kleopatrinidae has been collected. The latter contains the species: Paraheritschioides antoni antoni, P. antoni minor, P. gracilis and two new species for the genera Fomichevella and Heintzella. Heintzella is described from Iran for the first time. However, its age, as determined by conodonts and foraminifers, is early to middle Bashkirian (early late Carboniferous). The most similar, time-equivalent faunal associations are that of the Ellesmere Island, Sverdrup Basin in Arctic Canada, Alexander terrane and Brooks Range in southeastern Alaska and eastern Klamath terrane in northern California, where similar tropical warm water conditions have been identified during the Bashkirian in the northern hemisphere. During these times central Iran block and Northern provinces, characterized by a dominant carbonate facies and more diversified colonial coral faunas

    Parallel Implementation of a Recursive Least Squares Neural Network Training Method on the Intel IPSC/2

    Get PDF
    An algorithm based on the Marquardt-Levenberg least-square optimization method has been shown by S. Kollias and D. Anastassiou (IEEE Trans. on Circuits Syst. vol.36, no.8, p.1092-101, Aug. 1989) to be a much more efficient training method than gradient descent, when applied to some small feedforward neural networks. Yet, for many applications, the increase in computational complexity of the method outweighs any gain in learning rate obtained over current training methods. However, the least-squares method can be more efficiently implemented on parallel architectures than standard methods. This is demonstrated by comparing computation times and learning rates for the least-squares method implemented on 1, 2, 4, 8, and 16 processors on an Intel iPSC/2 multicomputer. Two applications which demonstrate the faster real-time learning rate of the last-squares method over than of gradient descent are give

    Towards an Achievable Performance for the Loop Nests

    Full text link
    Numerous code optimization techniques, including loop nest optimizations, have been developed over the last four decades. Loop optimization techniques transform loop nests to improve the performance of the code on a target architecture, including exposing parallelism. Finding and evaluating an optimal, semantic-preserving sequence of transformations is a complex problem. The sequence is guided using heuristics and/or analytical models and there is no way of knowing how close it gets to optimal performance or if there is any headroom for improvement. This paper makes two contributions. First, it uses a comparative analysis of loop optimizations/transformations across multiple compilers to determine how much headroom may exist for each compiler. And second, it presents an approach to characterize the loop nests based on their hardware performance counter values and a Machine Learning approach that predicts which compiler will generate the fastest code for a loop nest. The prediction is made for both auto-vectorized, serial compilation and for auto-parallelization. The results show that the headroom for state-of-the-art compilers ranges from 1.10x to 1.42x for the serial code and from 1.30x to 1.71x for the auto-parallelized code. These results are based on the Machine Learning predictions.Comment: Accepted at the 31st International Workshop on Languages and Compilers for Parallel Computing (LCPC 2018

    Cortisol and its metabolites in juvenile Siberian sturgeon, Acipenser baerii Brandt, 1869 in response to short-term food deprivation

    Get PDF
    In this study, the effect of short-terms starvation (0, 2, 4 and 8 days) on plasma cortisol, glucose, triglyceride and cholesterol levels and also hepatosomatic index in Siberian sturgeon, Acipenser baerii, was investigated. After acclimation to experimental conditions for 10 days using formulated diet, 180 juvenile Siberian sturgeons (mean weight ± S.E.=19.3±0.4, n=15) were randomly distributed among twelve circular, 500l, fiber glass holding tanks with a flow-through system. In this study, control fish (C) were fed with formulated diet to apparent satiation four times daily throughout the experiment. The other three groups were deprived from feed for 2 (T1), 4 (T2) and 8 (T3) days, respectively. Blood samples were taken at the end of the starvation periods for biochemical analyses. Plasma cortisol, triglyceride and cholesterol levels were not significantly different between control and starved fish at the end of the food deprivation periods, but plasma glucose levels were significantly lower in the starved groups, compared to the control fish. HSI index significantly decreased in all starvation groups, except T1, in comparison to the control. The results suggest that energy reserves mobilization during starvation in Siberian sturgeon may be achieved without the involvement of cortisol. Moreover, in this species there are clear indications of metabolic adjustment ability to short periods of food deprivation

    The PERSIANN family of global satellite precipitation data: a review and evaluation of products

    Get PDF
    Over the past 2 decades, a wide range of studies have incorporated Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN) products. Currently, PERSIANN offers several precipitation products based on different algorithms available at various spatial and temporal scales, namely PERSIANN, PERSIANN-CCS, and PERSIANN-CDR. The goal of this article is to first provide an overview of the available PERSIANN precipitation retrieval algorithms and their differences. Secondly, we offer an evaluation of the available operational products over the contiguous US (CONUS) at different spatial and temporal scales using Climate Prediction Center (CPC) unified gauge-based analysis as a benchmark. Due to limitations of the baseline dataset (CPC), daily scale is the finest temporal scale used for the evaluation over CONUS. Additionally, we provide a comparison of the available products at a quasi-global scale. Finally, we highlight the strengths and limitations of the PERSIANN products and briefly discuss expected future developments.</p

    Enhanced Self Assembled Monolayer Surface Coverage by ALD NiO in p i n Perovskite Solar Cells

    Get PDF
    Metal halide perovskites have attracted tremendous attention due to their excellent electronic properties. Recent advancements in device performance and stability of perovskite solar cells PSCs have been achieved with the application of self assembled monolayers SAMs , serving as stand alone hole transport layers in the p i n architecture. Specifically, phosphonic acid SAMs, directly functionalizing indium tin oxide ITO , are presently adopted for highly efficient devices. Despite their successes, so far, little is known about the surface coverage of SAMs on ITO used in PSCs application, which can affect the device performance, as non covered areas can result in shunting or low open circuit voltage. In this study, we investigate the surface coverage of SAMs on ITO and observe that the SAM of MeO 2PACz [2 3,6 dimethoxy 9H carbazol 9 yl ethyl]phosphonic acid inhomogeneously covers the ITO substrate. Instead, when adopting an intermediate layer of NiO between ITO and the SAM, the homogeneity, and hence the surface coverage of the SAM, improve. In this work, NiO is processed by plasma assisted atomic layer deposition ALD with Ni MeCp 2 as the precursor and O2 plasma as the co reactant. Specifically, the presence of ALD NiO leads to a homogeneous distribution of SAM molecules on the metal oxide area, accompanied by a high shunt resistance in the devices with respect to those with SAM directly processed on ITO. At the same time, the SAM is key to the improvement of the open circuit voltage of NiO MeO 2PACz devices compared to those with NiO alone. Thus, the combination of NiO and SAM results in a narrower distribution of device performance reaching a more than 20 efficient champion device. The enhancement of SAM coverage in the presence of NiO is corroborated by several characterization techniques including advanced imaging by transmission electron microscopy TEM , elemental composition quantification by Rutherford backscattering spectrometry RBS , and conductive atomic force microscopy c AFM mapping. We believe this finding will further promote the usage of phosphonic acid based SAM molecules in perovskite P

    Textured interfaces in monolithic perovskite silicon tandem solar cells advanced light management for improved efficiency and energy yield

    Get PDF
    Efficient light management in monolithic perovskite silicon tandem solar cells is one of the prerequisites for achieving high power conversion efficiencies PCEs . Textured silicon wafers can be utilized for light management, however, this is typically not compatible with perovskite solution processing. Here, we instead employ a textured light management LM foil on the front side of a tandem solar cell processed on a wafer with planar front side and textured back side. This way the PCE of monolithic, 2 terminal perovskite silicon heterojunction tandem solar cells is significantly improved from 23.4 to 25.5 . Furthermore, we validate an advanced numerical model for our fabricated device and use it to optically optimize a number of device designs with textures at different interface with respect to the PCE and energy yield. These simulations predict a slightly lower optimal bandgap of the perovskite top cell in a textured device as compared to a flat one and demonstrate strong interdependency between the bandgap and the texture position in the monolithic stack. We estimate the PCE potential for the best performing both side textured device to be 32.5 for a perovskite bandgap of 1.66 eV. Furthermore, the results show that under perpendicular illumination conditions, for optimized designs, the LM foil on top of the cell performs only slightly better than a flat anti reflective coating. However, under diffuse illumination, the benefits of the LM foil are much greater. Finally, we calculate the energy yield for the different device designs, based on true weather data for three different locations throughout the year, taking direct as well as diffuse illumination fully into account. The results further confirm the benefits of front side texture, even more for BIPV applications. Overall, devices built on a both side textured silicon wafer perform best. However, we show that devices with textured LM foils on the cell s front side are a highly efficient alternativ

    KIR gene content diversity in four Iranian populations

    Get PDF
    Killer cell immunoglobulin-like receptors (KIR) regulate natural killer cell response against infection and malignancy. KIR genes are variable in the number and type, thereby discriminating individuals and populations. Herein, we analyzed the KIR gene content diversity in four native populations of Iran. The KIR genomic diversity was comparable between Bakhtiari and Persian and displayed a balance of A and B KIR haplotypes, a trend reported in Caucasian and African populations. The KIR gene content profiles of Arab and Azeri were comparable and displayed a preponderance of B haplotypes, a scenario reported in the natives of America, India, and Australia. A majority of the B haplotype carriers of Azeri and Arab had a centromeric gene-cluster (KIR2DS2-2DL2-2DS3-2DL5). Remarkably, this cluster was totally absent from the American natives but occurred at highest frequencies in the natives of India and Australia in combination with another gene cluster at the telomeric region (KIR3DS1-2DL5-2DS5-2DS1). Therefore, despite having similar frequencies of B haplotypes, the occurrence of B haplotype-specific KIR genes, such as 2DL2, 2DL5, 3DS1, 2DS1, 2DS2, 2DS3, and 2DS5 in Azeri and Arab were substantially different from the natives of America, India, and Australia. In conclusion, each Iranian population exhibits distinct KIR gene content diversity, and the Indo-European KIR genetic signatures of the Iranians concur with geographic proximity, linguistic affinity, and human migrations

    Micro-ribonucleic acid-155 is a direct target of Meis1, but not a driver in acute myeloid leukemia

    Get PDF
    Micro-ribonucleic acid-155 (miR-155) is one of the first described oncogenic miRNAs. Although multiple direct targets of miR-155 have been identified, it is not clear how it contributes to the pathogenesis of acute myeloid leukemia. We found miR-155 to be a direct target of Meis1 in murine Hoxa9/Meis1 induced acute myeloid leukemia. The additional overexpression of miR-155 accelerated the formation of acute myeloid leukemia in Hoxa9 as well as in Hoxa9/Meis1 cells However, in the absence or following the removal of miR-155, leukemia onset and progression were unaffected. Although miR-155 accelerated growth and homing in addition to impairing differentiation, our data underscore the pathophysiological relevance of miR-155 as an accelerator rather than a driver of leukemogenesis. This further highlights the complexity of the oncogenic program of Meis1 to compensate for the loss of a potent oncogene such as miR-155. These findings are highly relevant to current and developing approaches for targeting miR-155 in acute myeloid leukemia
    • …
    corecore