3 research outputs found

    Graphene-Si CMOS oscillators

    Get PDF
    Graphene field-effect transistors (GFETs) offer a possibility of exploiting unique physical properties of graphene in realizing novel electronic circuits. However, graphene circuits often lack the voltage swing and switchability of Si complementary metal-oxide-semiconductor (CMOS) circuits, which are the main building block of modern electronics. Here we introduce graphene in Si CMOS circuits to exploit favorable electronic properties of both technologies and realize a new class of simple oscillators using only a GFET, Si CMOS D latch, and timing RC circuit. The operation of the two types of realized oscillators is based on the ambipolarity of graphene, i.e., the symmetry of the transfer curve of GFETs around the Dirac point. The ambipolarity of graphene also allowed to turn the oscillators into pulse-width modulators (with a duty cycle ratio ∼1 : 4) and voltage-controlled oscillators (with a frequency ratio ∼1 : 8) without any circuit modifications. The oscillation frequency was in the range from 4 kHz to 4 MHz and limited only by the external circuit connections, rather than components themselves. The demonstrated graphene-Si CMOS hybrid circuits pave the way to the more widespread adoption of graphene in electronics

    Chiral transport of hot carriers in graphene in the quantum Hall regime

    Get PDF
    Photocurrent (PC) measurements can reveal the relaxation dynamics of photo-excited hot carriers beyond the linear response of conventional transport experiments, a regime important for carrier multiplication. In graphene subject to a magnetic field, PC measurements are able to probe the existence of Landau levels with different edge chiralities which is exclusive to relativistic electron systems. Here, we report the accurate measurement of PC in graphene in the quantum Hall regime. Prominent PC oscillations as a function of gate voltage on samples' edges are observed. These oscillation amplitudes form an envelope which depends on the strength of the magnetic field, as does the PCs' power dependence and their saturation behavior. We explain these experimental observations through a model using optical Bloch equations, incorporating relaxations through acoustic-, optical- phonons and Coulomb interactions. The simulated PC agrees with our experimental results, leading to a unified understanding of the chiral PC in graphene at various magnetic field strengths, and providing hints for the occurrence of a sizable carrier multiplication.Comment: 14 pages, 13 figure
    corecore