8 research outputs found

    Relation between the solar wind dynamic pressure at Voyager 2 and the energetic particle events at Voyager 1

    Get PDF
    Starting in 2001, Voyager 1 observed three events characterized by enhanced fluxes of energetic particles. These events suggest that Voyager 1 made a close approach to, or a crossing of, the termination shock. Although the plasma experiment on Voyager 1 is not providing useful data, plasma data from Voyager 2 may shed light on the plasma conditions at Voyager 1. Before the first particle event, Voyagers 1 and 2 see similar particle signatures. Voyager 2 pressure and energetic particle flux profiles have similar structure. The merged interaction regions (MIRs) observed at Voyager 2 have counterparts in the Voyager 1 data. We propagate solar wind data from Voyager 2 to Voyager 1 and show that at the predicted MIR arrival times, there is always a response in the Voyager 1 particle data. These effects vary, from an increase in particle flux to a rapid turnoff of the particle event. We discuss the observed energetic particle effects and how the MIRs produce them

    The Challenge of Machine Learning in Space Weather Nowcasting and Forecasting

    Get PDF
    The numerous recent breakthroughs in machine learning (ML) make imperative to carefully ponder how the scientific community can benefit from a technology that, although not necessarily new, is today living its golden age. This Grand Challenge review paper is focused on the present and future role of machine learning in space weather. The purpose is twofold. On one hand, we will discuss previous works that use ML for space weather forecasting, focusing in particular on the few areas that have seen most activity: the forecasting of geomagnetic indices, of relativistic electrons at geosynchronous orbits, of solar flares occurrence, of coronal mass ejection propagation time, and of solar wind speed. On the other hand, this paper serves as a gentle introduction to the field of machine learning tailored to the space weather community and as a pointer to a number of open challenges that we believe the community should undertake in the next decade. The recurring themes throughout the review are the need to shift our forecasting paradigm to a probabilistic approach focused on the reliable assessment of uncertainties, and the combination of physics-based and machine learning approaches, known as gray-box.Comment: under revie
    corecore