11 research outputs found

    Skin microbiota diversity among genetically unrelated individuals of Indian origin

    Get PDF
    BackgroundHuman skin harbors complex transient and resident microbial communities that show intra- & inter-individual variation due to various environmental and host-associated factors such as skin site, diet, age, gender, genetics, or the type and use of cosmetics. This variation remains largely uncharacterized in the Indian population; hence, the present study aims to characterize the variation in skin microbiota among individuals of Indian origin and quantify associations with age, diet, and geography.MethodsAxillary sweat samples from genetically unrelated individuals (N = 58) residing in the three geographical locations of Maharashtra, India, were collected using a sterile cotton swab. Bacterial DNA was extracted using a standard protocol and checked for quality. Variable regions (V3-V4) of the 16S rRNA gene were sequenced using the Illumina platform. We used standard methods from microbiota bioinformatics, including alpha and beta diversity, community typing, and differential abundance, to quantify the association of skin microbiota with age, diet., and geographical location.ResultsOur study indicated the prevalence of phyla- Firmicutes, Proteobacteria, and Actinobacteria, consistent with previous reports on skin microbiota composition of the world population level. The alpha diversity (Shannon index) was significantly associated with the age group (Kruskal-Wallis test, p = 0.02), but not with geography (p = 0.62) or diet (p = 0.74). The overall skin microbiota community composition was significantly associated with geographical location based on Community State Types (CST) analysis and PERMANOVA (R-2 = 0.07, p = 0.01). Differential abundance analysis at the genus level indicated a distinctively high abundance of Staphylococcus and Corynebacterium among individuals of the Pune district. Pseudomonas and Anaerococcus were abundant in individuals from Ahmednagar whereas, Paenibacillus, Geobacillus, Virgibacillus, Jeotgalicoccus, Pullulanibacillus, Delsulfosporomusa, Citinovibrio, and Calditerricola were abundant in individuals from Nashik district.ConclusionOur work provides one of the first characterizations of skin microbiota variation in different sub-populations in India. The analysis quantifies the level of individuality, as contrasted to the other factors of age, geography, and diet, thus helping to evaluate the applicability of skin microbiota profiles as a potential biomarker to stratify individuals.</p

    Towards standardized and reproducible research in skin microbiomes

    Get PDF
    Skin is a complex organ serving a critical role as a barrier and mediator of interactions between the human body and its environment. Recent studies have uncovered how resident microbial communities play a significant role in maintaining the normal healthy function of the skin and the immune system. In turn, numerous host-associated and environmental factors influence these communities' composition and diversity across the cutaneous surface. In addition, specific compositional changes in skin microbiota have also been connected to the development of several chronic diseases. The current era of microbiome research is characterized by its reliance on large data sets of nucleotide sequences produced with high-throughput sequencing of sample-extracted DNA. These approaches have yielded new insights into many previously uncharacterized microbial communities. Application of standardized practices in the study of skin microbial communities could help us understand their complex structures, functional capacities, and health associations and increase the reproducibility of the research. Here, we overview the current research in human skin microbiomes and outline challenges specific to their study. Furthermore, we provide perspectives on recent advances in methods, analytical tools and applications of skin microbiomes in medicine and forensics

    Plumbagin, a Biomolecule with (Anti)Osteoclastic Properties

    No full text
    Plumbagin is a plant-derived naphthoquinone that is widely used in traditional Asian medicine due to its anti-inflammatory and anti-microbial properties. Additionally, plumbagin is cytotoxic for cancer cells due to its ability to trigger reactive oxygen species (ROS) formation and subsequent apoptosis. Since it was reported that plumbagin may inhibit the differentiation of bone resorbing osteoclasts in cancer-related models, we wanted to elucidate whether plumbagin interferes with cytokine-induced osteoclastogenesis. Using C57BL/6 mice, we unexpectedly found that plumbagin treatment enhanced osteoclast formation and that this effect was most pronounced when cells were pre-treated for 24 h with plumbagin before subsequent M-CSF/RANKL stimulation. Plumbagin caused a fast induction of NFATc1 signalling and mTOR-dependent activation of p70S6 kinase which resulted in the initiation of protein translation. In line with this finding, we observed an increase in RANK surface expression after Plumbagin stimulation that enhanced the responsiveness for subsequent RANKL treatment. However, in Balb/c mice and Balb/c-derived RAW264.7 macrophages, these findings could not be corroborated and osteoclastogenesis was inhibited. Our results suggest that the effects of plumbagin depend on the model system used and can therefore either trigger or inhibit osteoclast formation

    Host microsatellite alleles in malaria predisposition?

    No full text
    Abstract Background Malaria is a serious, sometimes fatal, disease caused by Plasmodium infection of human red blood cells. The host-parasite co-evolutionary processes are well understood by the association of coding variations such as G6PD, Duffy blood group receptor, HLA, and beta-globin gene variants with malaria resistance. The profound genetic diversity in host is attributed to polymorphic microsatellites loci. The microsatellite alleles in bacterial species are known to have aided their survival in fatal environmental conditions. The fascinating question is whether microsatellites are genomic cushion in the human genome to combat disease stress and has cause-effect relationships with infections. Presentation of the hypothesis It is hypothesized that repeat units or alleles of microsatellites TH01 and D5S818, located in close proximity to beta-globin gene and immune regulatory region in human play a role in malaria predisposition. Association of alleles at aforesaid microsatellites with malaria infection was analysed. To overrule the false association in unrecognized population stratification, structure analysis and AMOVA were performed among the sampled groups. Testing of hypothesis Associations of microsatellite alleles with malaria infection were verified using recombination rate, Chi-square, and powerful likelihood tests. Further investigation of population genetic structure, and AMOVA was done to rule out the confounding effects of population stratification in interpretation of association studies. Implication of the hypothesis Lower recombination rate (θ) between microsatellites and genes implicated in host fitness; positive association between alleles -13 (D5S818), 9 (TH01) and strong susceptibility to Plasmodium falciparum; and alleles-12 (D5S818) and 6 (TH01) rendering resistance to human host were evident. The interesting fact emerging from the study was that while predisposition to malaria was a prehistoric attribute, among TH01 alleles; evolution of resistant allele-6 was a recent phenomenon, which could conceivably be driven by infection related selective forces. The host's microsatellite allelic associations with malaria infection were valid in the light of low genetic variance between sampled groups and no population stratification.</p

    Host microsatellite alleles in malaria predisposition?

    Get PDF
    Background: Malaria is a serious, sometimes fatal, disease caused by Plasmodium infection of human red blood cells. The host-parasite co-evolutionary processes are well understood by the association of coding variations such as G6PD, Duffy blood group receptor, HLA, and beta-globin gene variants with malaria resistance. The profound genetic diversity in host is attributed to polymorphic microsatellites loci. The microsatellite alleles in bacterial species are known to have aided their survival in fatal environmental conditions. The fascinating question is whether microsatellites are genomic cushion in the human genome to combat disease stress and has cause-effect relationships with infections. Presentation of the hypothesis: It is hypothesized that repeat units or alleles of microsatellites TH01 and D5S818, located in close proximity to beta-globin gene and immune regulatory region in human play a role in malaria predisposition. Association of alleles at aforesaid microsatellites with malaria infection was analysed. To overrule the false association in unrecognized population stratification, structure analysis and AMOVA were performed among the sampled groups. Testing of hypothesis: Associations of microsatellite alleles with malaria infection were verified using recombination rate, Chi-square, and powerful likelihood tests. Further investigation of population genetic structure, and AMOVA was done to rule out the confounding effects of population stratification in interpretation of association studies. Implication of the hypothesis: Lower recombination rate (θ) between microsatellites and genes implicated in host fitness; positive association between alleles -13 (D5S818), 9 (TH01) and strong susceptibility to Plasmodium falciparum; and alleles-12 (D5S818) and 6 (TH01) rendering resistance to human host were evident. The interesting fact emerging from the study was that while predisposition to malaria was a prehistoric attribute, among TH01 alleles; evolution of resistant allele-6 was a recent phenomenon, which could conceivably be driven by infection related selective forces. The host\u27s microsatellite allelic associations with malaria infection were valid in the light of low genetic variance between sampled groups and no population stratification. © 2005 Gaikwad et al; licensee BioMed Central Ltd

    Plumbagin modulates RANKL-induced osteoclast and osteoblast differentiation

    No full text
    Background: Bone remodeling is a balanced, dynamic function of two counteractive processes: osteoblasts-mediated bone formation and osteoclasts-dependent bone resorption. An imbalance between these two processes causes bone diseases. Herein, the effects and molecular modus operandi of plumbagin- a bioactive phytometabolite from Plumbago sp. have been investigated on osteoblast and osteoclast differentiation. Material and Methods: Cell viability assay and Alizarin red-S staining assessed the plumbagin effects on pre-osteoblastic MC3T3-E1 cell viability and differentiation. Alkaline phosphatase activity, the osteoblast-specific genes, and protein expression were investigated by colorimetry, quantitative-PCR and immunoblotting, respectively. TRAP assay and osteoclast-specific proteins' expression assessed plumbagin's effect on osteoclastogenesis. During plumbagin-driven osteoclastogenesis, we used paired-end RNA-sequencing data to identify the key up-/down-regulated DEGs, validation by qPCR, and bioinformatics-based pathway analysis. Results: Plumbagin at a very low dose (0.25 µM) significantly promoted osteoblast differentiation, as evident from alkaline phosphatase, matrix mineralization, and enhanced expression of osteoblast-specific markers, including Runx2 and its target genes. The reduced TRAP activity, osteoclast-specific protein expression, and RNA sequencing suggested RANKL-induced osteoclastogenesis inhibition by plumbagin at 2 µM.. Conclusion: Plumbagin significantly enhances osteoblast differentiation by enhanced matrix mineralization and osteoblast-specific gene expression but suppresses the RANKL-induced osteoclastogenesis by regulating key osteoclast-specific DEGs and protein expression. Plumbagin can thus significantly influence bone biology and affect bone diseases

    Polyalanine polymorphism in the signal peptide of Glutathione peroxidase 1 (GPX1) gene & its association with osteoporosis

    No full text
    Background & objectives: Osteoporosis is a systemic skeletal disease, characterized by a low bone mass leading to increased bone fragility and hence, a greater susceptibility to the risk of fracture. Since age-related oxidative stress is one of the factors that has been implicated in developing low bone mineral density (BMD), leading to osteoporosis, this study wanted to explore the expression of antioxidant enzymes in individuals with osteoporosis. The present study focused on mapping polymorphism in an important antioxidant enzyme glutathione peroxidase 1 (GPx1) among osteoporosis and healthy Asian Indians. Methods: Dual-energy X-ray absorptiometry was used to assess BMD of individuals and was classified into normal (n=96) and osteoporotic (n=88) groups. Biochemical parameters such as vitamin D, total oxidant status (TOS), and GPx1 enzyme activity were estimated from plasma samples of recruited individuals. Quantitative real-time qRT-PCR was carried out using GAPDH as an endogenous control. Genomic DNA was isolated from whole blood, and polymorphisms were evaluated by sequencing. Results: The BMD was lower in osteoporotic individuals, and further analysis of biochemical parameters indicated significantly low 25-hydroxy vitamin D and GPx1 with higher TOS levels in osteoporotic as compared to healthy individuals. Furthermore, qRT-PCR revealed low expression of GPX1 in osteoporotic individuals. GPX1 sequence analysis of the promoter and two exons revealed the lower frequency of five alanine repeats in the osteoporotic individuals. Interpretation & conclusions: In this study, the in silico analysis revealed the lower frequency of five alanine repeats in exon 1 of GPX1 and high TOS to be associated with osteoporosis. However, no polymorphism was found in exon 2 of GPX1 among the two study groups

    Genetic polymorphisms in Nrf2 and FoxO1: implications for antioxidant enzyme activity in diabetes

    No full text
    In diabetes, persistent hyperglycemia generates excess reactive oxygen species (ROS), leading to oxidative stress (OS). In response to OS, transcription factors (TFs) Nrf2 and FoxO1 get activated, which induce the expression of antioxidant enzymes catalase (CAT) and superoxide dismutase (SOD). It is well documented that the antioxidant response in diabetic individuals is very low. Since Nrf2 and FoxO1 are the major TFs activating these genes, we were interested in determining if single nucleotide polymorphisms (SNPs) in genes for these TFs have any association with lowered antioxidant enzyme activity in diabetic individuals. The activity of CAT and SOD and total antioxidant capacity (TAC) were quantified from the serum samples of diabetic (n = 98) and non-diabetic (n = 90) individuals. Genomic DNA was isolated, and Nrf2 and FoxO1 were amplified and sequenced by Illumina NextSeq500. Data were screened for SNPs in amplified regions. An independent samples t-test to find an association between CAT, SOD, and TAC and allele frequency of SNP with the diabetic condition was carried out. We found decreased CAT and SOD activity and significantly low TAC in diabetic individuals. Thirty-two and thirty-four SNPs and Single-nucleotide variants (SNVs) were observed in Nrf2 and FoxO1, respectively. However, a statistically significant difference in the allele frequency distribution between study groups was observed only in two intronic SNPs, rs17524059:A > C and rs60373589:Indel(A) of Nrf2 and FoxO1, respectively. SNPs, rs17524059 in the Nrf2 and rs60373589 of FoxO1, were not associated with reduced CAT and SOD activity and level of TAC in Indian diabetic individuals. Communicated by Ramaswamy H. Sarma</p
    corecore