146 research outputs found

    Administrative Detention in Armed Conflict

    Full text link

    Prevention and management of adverse events related to regorafenib

    Get PDF
    Regorafenib is an oral multikinase inhibitor that has shown antitumor activity in a range of solid tumors. Based on data from phase III clinical trials, regorafenib is indicated for the treatment of adult patients with metastatic colorectal cancer who have previously been treated with, or are not considered candidates for, other available therapies, and in patients with advanced gastrointestinal stromal tumors that cannot be surgically removed and no longer respond to other appropriate treatments. A panel of oncology nurses, research coordinators, and other medical oncology experts, experienced in the care of patients treated with regorafenib, met to discuss the best practice for the management of regorafenib-associated adverse events (AEs). The panel agreed that, in clinical trials and daily practice with regorafenib, AEs are common but mostly manageable. The most common and/or important AEs associated with regorafenib were considered to be hand-foot skin reaction, rash or desquamation, stomatitis, diarrhea, hypertension, liver abnormalities, and fatigue. This manuscript describes the experience and recommendations of the panel for managing these AEs in everyday clinical practice. Appropriate education, monitoring, and management are considered essential for reducing the incidence, duration, and severity of regorafenib-associated AEs. © 2013 The Author(s)

    The Clustering of Galaxies in the Completed SDSS-III Baryon Oscillation Spectroscopic Survey: Observational Systematics and Baryon Acoustic Oscillations in the Correlation Function

    Get PDF
    We present baryon acoustic oscillation (BAO) scale measurements determined from the clustering of 1.2 million massive galaxies with redshifts 0.2 \u3c z \u3c 0.75 distributed over 9300 deg2, as quantified by their redshift-space correlation function. In order to facilitate these measurements, we define, describe, and motivate the selection function for galaxies in the final data release (DR12) of the SDSS III Baryon Oscillation Spectroscopic Survey (BOSS). This includes the observational footprint, masks for image quality and Galactic extinction, and weights to account for density relationships intrinsic to the imaging and spectroscopic portions of the survey. We simulate the observed systematic trends in mock galaxy samples and demonstrate that they impart no bias on BAO scale measurements and have a minor impact on the recovered statistical uncertainty. We measure transverse and radial BAO distance measurements in 0.2 \u3c z \u3c 0.5, 0.5 \u3c z \u3c 0.75, and (overlapping) 0.4 \u3c z \u3c 0.6 redshift bins. In each redshift bin, we obtain a precision that is 2.7 per cent or better on the radial distance and 1.6 per cent or better on the transverse distance. The combination of the redshift bins represents 1.8 per cent precision on the radial distance and 1.1 per cent precision on the transverse distance. This paper is part of a set that analyses the final galaxy clustering data set from BOSS. The measurements and likelihoods presented here are combined with others in Alam et al. to produce the final cosmological constraints from BOSS

    The Clustering of Galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: Including Covariance Matrix Errors

    Get PDF
    We present improved methodology for including covariance matrices in the error budget of Baryon Oscillation Spectroscopic Survey (BOSS) galaxy clustering measurements, revisiting Data Release 9 (DR9) analyses, and describing a method that is used in DR10/11 analyses presented in companion papers. The precise analysis method adopted is becoming increasingly important, due to the precision that BOSS can now reach: even using as many as 600 mock catalogues to estimate covariance of two-point clustering measurements can still lead to an increase in the errors of ~20 per cent, depending on how the cosmological parameters of interest are measured. In this paper, we extend previous work on this contribution to the error budget, deriving formulae for errors measured by integrating over the likelihood, and to the distribution of recovered best-fitting parameters fitting the simulations also used to estimate the covariance matrix. Both are situations that previous analyses of BOSS have considered. We apply the formulae derived to baryon acoustic oscillation (BAO) and redshift-space distortion (RSD) measurements from BOSS in our companion papers. To further aid these analyses, we consider the optimum number of bins to use for two-point measurements using the monopole power spectrum or correlation function for BAO, and the monopole and quadrupole moments of the correlation function for anisotropic-BAO and RSD measurements

    Acoustic Scale from the Angular Power Spectra of SDSS-III DR8 Photometric Luminous Galaxies

    Get PDF
    We measure the acoustic scale from the angular power spectra of the Sloan Digital Sky Survey III (SDSS-III) Data Release 8 imaging catalog that includes 872, 921 galaxies over ~10,000 deg2 between 0.45 \u3c z \u3c 0.65. The extensive spectroscopic training set of the Baryon Oscillation Spectroscopic Survey luminous galaxies allows precise estimates of the true redshift distributions of galaxies in our imaging catalog. Utilizing the redshift distribution information, we build templates and fit to the power spectra of the data, which are measured in our companion paper, to derive the location of Baryon acoustic oscillations (BAOs) while marginalizing over many free parameters to exclude nearly all of the non-BAO signal. We derive the ratio of the angular diameter distance to the sound horizon scale DA(z)/rs = 9.212+0.416-0.404 at z = 0.54, and therefore DA (z) = 1411 ± 65 Mpc at z = 0.54; the result is fairly independent of assumptions on the underlying cosmology. Our measurement of angular diameter distance DA(z) is 1.4σ higher than what is expected for the concordance ΛCDM, in accordance to the trend of other spectroscopic BAO measurements for z ≳ 0.35. We report constraints on cosmological parameters from our measurement in combination with the WMAP7 data and the previous spectroscopic BAO measurements of SDSS and WiggleZ. We refer to our companion papers (Ho et al.; de Putter et al.) for investigations on information of the full power spectrum

    Clustering of Sloan Digital Sky Survey III Photometric Luminous Galaxies: The Measurement, Systematics, and Cosmological Implications

    Get PDF
    The Sloan Digital Sky Survey (SDSS) surveyed 14,555 deg2, and delivered over a trillion pixels of imaging data. We present a study of galaxy clustering using 900,000 luminous galaxies with photometric redshifts, spanning between z = 0.45 and z = 0.65, constructed from the SDSS using methods described in Ross et al. This data set spans 11,000 deg2 and probes a volume of 3 h-3 Gpc3, making it the largest volume ever used for galaxy clustering measurements. We describe in detail the construction of the survey window function and various systematics affecting our measurement. With such a large volume, high-precision cosmological constraints can be obtained given careful control and understanding of the observational systematics. We present a novel treatment of the observational systematics and its applications to the clustering signals from the data set. In this paper, we measure the angular clustering using an optimal quadratic estimator at four redshift slices with an accuracy of ~5%, with a bin size of δ1 = 10 on scales of the baryon acoustic oscillations (BAOs; at ℓ ~ 40-400). We also apply corrections to the power spectra due to systematics and derive cosmological constraints using the full shape of the power spectra. For a flat ΛCDM model, when combined with cosmic microwave background Wilkinson Microwave Anisotropy Probe 7 (WMAP7) and H0 constraints from using 600 Cepheids observed by Wide Field Camera 3 (WFC3; HST), we find Ω˄ = 0.73 ± 0.019 and H0 to be 70.5 ± 1.6 s-1 Mpc-1 km. For an open ΛCDM model, when combined with WMAP7 + HST, we find ΩK = 0.0035 ± 0.0054, improved over WMAP7+HST alone by 40%. For a wCDM model, when combined with WMAP7+HST+SN, we find ω = -1.071 ± 0.078, and H0 to be 71.3 ± 1.7 s-1 Mpc-1 km, which is competitive with the latest large-scale structure constraints from large spectroscopic surveys such as the SDSS Data Release 7 (DR7) and WiggleZ. We also find that systematic-corrected power spectra give consistent constraints on cosmological models when compared with pre-systematic correction power spectra in the angular scales of interest. The SDSS-III Data Release 8 (SDSS-III DR8) Angular Clustering Data allow a wide range of investigations into the cosmological model, cosmic expansion (via BAO), Gaussianity of initial conditions, and neutrino masses. Here, we refer to our companion papers for further investigations using the clustering data. Our calculation of the survey selection function, systematics maps, and likelihood function for the COSMOMC package will be released at http://portal.nersc.gov/project/boss/galaxy/photoz/
    • …
    corecore