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ABSTRACT
We present improved methodology for including covariance matrices in the error budget of
Baryon Oscillation Spectroscopic Survey (BOSS) galaxy clustering measurements, revisiting
Data Release 9 (DR9) analyses, and describing a method that is used in DR10/11 analyses
presented in companion papers. The precise analysis method adopted is becoming increas-
ingly important, due to the precision that BOSS can now reach: even using as many as 600
mock catalogues to estimate covariance of two-point clustering measurements can still lead to
an increase in the errors of ∼20 per cent, depending on how the cosmological parameters of
interest are measured. In this paper, we extend previous work on this contribution to the error
budget, deriving formulae for errors measured by integrating over the likelihood, and to the
distribution of recovered best-fitting parameters fitting the simulations also used to estimate
the covariance matrix. Both are situations that previous analyses of BOSS have considered.
We apply the formulae derived to baryon acoustic oscillation (BAO) and redshift-space dis-
tortion (RSD) measurements from BOSS in our companion papers. To further aid these anal-
yses, we consider the optimum number of bins to use for two-point measurements using the
monopole power spectrum or correlation function for BAO, and the monopole and quadrupole
moments of the correlation function for anisotropic-BAO and RSD measurements.

Key words: cosmology: observations – distance scale – large-scale structure of Universe.

1 IN T RO D U C T I O N

With the increasing precision enabled by modern cosmological
observations (e.g. Anderson et al. 2012; Planck Collaboration

� E-mail: will.percival@port.ac.uk

2013), there is increasing interest in making their statistical analy-
sis as rigorous as the measurements themselves. In this brief paper,
we review the propagation of errors in the covariance matrix to the
parameter errors, extending recent work (Taylor, Joachimi & Kitch-
ing 2012; Dodelson & Schneider 2013) to cover errors estimated
by marginalizing over the likelihood recovered for each mock, and
errors measured from the distribution of mocks that are also used to

C© 2014 The Authors
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2532 W. J. Percival et al.

estimate the covariance matrix. These situations arose in our recent
analysis measuring the baryon acoustic oscillation (BAO) position
in the Baryon Oscillation Spectroscopic Survey (BOSS; Eisenstein
et al. 2011; Dawson et al. 2013) Data Release 9 (DR9; Ahn
et al. 2012) galaxy samples (Anderson et al. 2012), and in related
analyses.

Many cosmological observations are well described as being
drawn from a multivariate Gaussian distribution with inverse co-
variance matrix � t, where the superscript t denotes the true matrix,
so that parameter inferences (such as finding the BAO position) can
be based on a likelihood

L(x| p, �t ) = |�t |√
2π

exp

[
−1

2
χ2(x, p, �t )

]
, (1)

where

χ2(x, p, �t ) ≡
∑

ij

[
xd

i − xi( p)
]
�t

ij

[
xd

j − xj ( p)
]
. (2)

In the example of BAO fitting, the data xd , and model for the data
x( p), would be power spectra or correlation functions, with the
parameter p being the BAO position.

In many experiments, it is common to use mock, or simulated,
data to estimate the inverse covariance matrix � t. Suppose we
have nb data measurements such as power spectrum band powers
and wish to estimate the covariance matrix using ns simulations.
Assuming that the mock data can be written as xs

i , with 1 ≤ i ≤ nb

and 1 ≤ s ≤ ns, the mean of each value over all simulations is

μi = 1

ns

∑
s

xs
i , (3)

and an unbiased estimate of the true covariance matrix Ct from
these data is

Cij = 1

ns − 1

∑
s

(
xs

i − μi

) (
xs

j − μj

)
. (4)

The distribution of matrices recovered from multiple, independent
sets of simulations follows the statistics of a Wishart distribution,
and its inverse �, from an inverse Wishart distribution with true
inverse covariance matrix � t (e.g. Press 2005).

Because we do not know � t, we cannot use equation (1) di-
rectly, but should instead make parameter inferences using a joint
likelihood

L(x, �| p, �t ) = L(x| p, �)L(�|�t ), (5)

where L(�|�t ) is given by an inverse Wishart distribution, while
L(x| p, �) is the standard distribution given in equation (1), after
replacing the true inverse covariance matrix with the estimate. We
can subsequently marginalize over � t to obtain L(x, �| p), which
can be used to derive parameter measurements.

The marginalization over all elements in � t is computationally
challenging; this limitation has led to an approximate approach,
where the estimate of � t is used instead of the true inverse covari-
ance matrix in equation (1), and the method and results from this
approach are corrected. Marginalizing over the distribution of mea-
sured covariance matrices in equation (5) leads to two important
corrections to this simplified approach.

(i) The inverse Wishart distribution has a form such that C−1,
with C determined as in equation (4), is a biased estimate of the
inverse covariance matrix.

(ii) The marginalization over possible true inverse covariance
matrices increases the width of the error on any measured parameter
from that recovered from L(x| p, �).

The first effect can be corrected by using an unbiased estimate of
the inverse covariance matrix in the likelihood calculation

� = (1 − D)C−1, D = nb + 1

ns − 1
, (6)

where the factor D accounts for the skewed nature of the inverse
Wishart distribution (for the first cosmological application of this,
see Hartlap, Simon & Schneider 2007).

Changing the covariance matrix in this manner does not correct
for errors in the covariance matrix, which propagate through to
errors on estimated parameters, so the second effect is still apparent.
Suppose that the inverse covariance matrix estimate has an error
�� compared with the true matrix � t, with � = � t + ��. For
simulations drawn from a multivariate Gaussian, these errors can
be calculated (Taylor et al. 2012),

〈��ij��i′j ′ 〉 = A�ij�i′j ′ + B(�ii′�jj ′ + �ij ′�ji′ ), (7)

where

A = 2

(ns − nb − 1)(ns − nb − 4)
,

B = (ns − nb − 2)

(ns − nb − 1)(ns − nb − 4)
. (8)

In the following three sections, we consider how to use these error
estimates to correct various parameter error calculations in order to
fully account for the errors in the covariance matrix. In Section 2,
we first follow the derivation of Dodelson & Schneider (2013),
calculating the true error for measurements made from data that
are independent from that used to estimate the covariance matrix.
In Section 3, we consider how the covariance matrix errors propa-
gate through to an estimate of the confidence interval derived from
an individual likelihoods, and how measurements made from this
approach must be corrected to give the true error. Section 4 con-
siders the distribution of values recovered when fitting the same
simulated data used to estimate the covariance: this exercise serves
as a test of the method, allowing the full set of simulations to be
used to both create and test the covariance matrix estimate. For
consistency and brevity in these sections, we follow the notation of
Dodelson & Schneider (2013) as closely as possible. The derived
formulae are tested using Monte Carlo simulations in Section 5.

While following the propagation of errors in the covariance ma-
trix through to parameter errors ensures that the estimated parameter
errors are unbiased, this calculation does not mean that the corrected
L(x| p, �) provides a maximum likelihood estimator for p. Instead,
the corrected parameter errors depend on the number of bins used
when modelling the data, which can be considered as part of the
methodology: smaller values of nb give rise to less noisy estimates
of the covariance matrix elements, while we cannot determine the
elements of larger covariance matrices with the same precision. Us-
ing larger covariance matrices leads to increasingly large deviations
in the accuracy of the parameter measurements compared with those
that would have been made using the true likelihood. In Section 6,
we provide a practical demonstration of the corrections, calculating
the optimal number of bins to use when performing cosmological
analyses of the latest BOSS galaxy clustering data.

2 TH E C O M B I N E D ER RO R

Suppose that we have estimated the covariance matrix using a sam-
ple of simulations and wish to know the full error that we should
expect on a measurement made using this covariance matrix and the

MNRAS 439, 2531–2541 (2014)
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Including covariance matrix errors in BOSS 2533

standard Gaussian likelihood, or equivalently the expected distribu-
tion of best-fitting parameter values that would be recovered from
an independent set of simulations. This calculation was performed
by Dodelson & Schneider (2013) and corresponds to determining
the combined error on a measurement including both the data and
covariance matrix errors.

We assume that the likelihood is calculated using the inverse
covariance matrix estimate of equation (6). Following equation 24
of Dodelson & Schneider (2013), and using the standard summation
convention, we can write the estimator for parameter pα as

p̂α = [F + �F ]−1
αα′

∂xi

∂pα′
�ij

(
xd

j − xt
j

)
, (9)

where F is the true Fisher matrix linearly relating the fitted parameter
p to the measurements around the true likelihood peak

Fαβ 

∑

ij

∂xi

∂pα

�t
ij

∂xj

∂pβ

, (10)

and similarly for �F as a function of ��. Also following Dodelson
& Schneider (2013), and without loss of generality, we assume that
the true values of the parameters pα = 0.

Dodelson & Schneider (2013) expanded equation (9) to find the
second-order (s.o.) contribution to the expected distribution of re-
covered values.

〈pαpβ〉|s.o. = B(nb − np)F−1
αβ , (11)

where B was given in equation (8), and np is the number of param-
eters measured. Thus, the corrected variance is

Vαβ = [1 + B(nb − np)]F−1
αβ . (12)

This result, which was a key conclusion of Dodelson & Schnei-
der (2013), describes the additional contribution to the data error
from a covariance matrix calculated from simulations. It matches
the distribution of best-fitting parameter measurements made from
a set of simulations that is independent of those used to estimate
the covariance matrix. However, this correction cannot be directly
applied to an error derived from the likelihood derived from a par-
ticular mocks (as made in Anderson et al. 2012, for example), as is
demonstrated in the next section.

3 E R RO R S FRO M TH E L I K E L I H O O D

In order to propagate the uncertainty in the covariance matrix
through to errors estimated from the recovered likelihood for a par-
ticular fit, we first review how these errors are usually calculated.
The best-fitting measurement can be made by integrating over the
likelihood

p̂α =
∫

pα√
2π|�−1| exp −1

2
χ2(x, p, �) dp, (13)

with χ2 defined as in equation (2). In the multivariate Gaussian ap-
proximation around the best-fitting solution, this expression reduces
to equation (9).

The (squared) error on the measurement can also be estimated by
integrating over the likelihood,

σ̂ 2
αβ =

∫
(pα − p̂α)(pβ − p̂β )√

2π|�−1| exp −1

2
χ2(x, p, �) dp. (14)

If � were known perfectly (i.e. we replace � with � t), equation (14)
would recover a parameter variance of [F ]−1

αβ , from the definition of

the Fisher matrix. The error in � instead leads to a revised variance
estimate

σ̂ 2
αβ = [F + �F ]−1

αβ . (15)

A Taylor series expansion then gives

σ̂ 2
αβ = F−1

αβ + (F−1�F F−1�F F−1)αβ, (16)

ignoring first-order terms that will lead to zero expectation. Using
the analogue of equation (10) for �F as a function of ��, and
substituting in equation (7), we see that the error from the covariance
matrix estimation increases the recovered variance to yield

σ̂ 2
αβ = [1 + A + B(np + 1)]F−1

αβ . (17)

Thus, the error in the covariance matrix has a biased effect on
errors derived from the likelihood from any particular fit: on average
they are larger than the errors would have been if we knew the
true inverse covariance matrix. Unfortunately, the increase in size
does not match the increase required to correct the distribution of
best-fitting values recovered from independent data as derived by
Dodelson & Schneider (2013), and presented in the previous section.
To obtain an unbiased estimate of the full variance on parameter pα ,
given a measurement of the error made using the standard method
of integrating over the likelihood, we therefore must apply a factor
of

m1 = Vαβ

σ̂ 2
αβ

= 1 + B(nb − np)

1 + A + B(np + 1)
(18)

to the measured parameter covariance, and the square root of this
expression to the measured standard deviation.

Because the correction to the measured parameter covariance
is independent of the value of the parameters around which the
variance is measured, this correction should be applied even if we
wish to estimate errors from the recovered likelihood, calculated by
fitting to the same data used to estimate the covariance matrix.

4 D I STRI BUTI ON O F SAME DATA

In general, one wants to construct the best covariance matrix possi-
ble, in order to minimize the additional error. Thus, if this matrix is
to be based on simulations, it is strongly desirable to use all avail-
able simulations. A classical approach is to apply any data analysis
pipeline to mock data in order to test for any problems. If all mocks
have already been used to estimate the covariance matrix, how-
ever, we should not expect to recover a distribution of best-fitting
solutions that matches the equations derived in Section 2.

Consequently, it is worth examining how the expected error
changes when we analyse the distribution of best-fitting values re-
covered from the same data set used to estimate the covariance
matrix. In this case, we can write〈(

xd
i − xt

i

) (
xd

j − xt
j

)〉 = (1 − D)(�−1)ij , (19)

from equations (4) and (6). Substituting this equation into an ex-
pansion of 〈pαpβ〉, with pα as in equation (9), we find

〈pαpβ〉 = (1 − D)[F + �F ]−1
αβ . (20)

Using the same approach that led from equation (15) to equation
(17) yields

〈pαpβ〉 = [
(1 − D)(1 + A + B(np + 1))

]
F−1

αβ . (21)

Therefore, the distribution of best-fitting parameter values recovered
from data that were also used to estimate the covariance matrix is

MNRAS 439, 2531–2541 (2014)
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2534 W. J. Percival et al.

biased in a different way to that of an independent set of data, and
from the covariance estimate made from the measured likelihood.
However, we can still use the recovered distribution to test the
methodology provided we include the revised bias when analysing
the result. Here, we need a corrective factor

m2 = Vαβ

〈pαpβ〉 = (1 − D)−1m1, (22)

with m1 defined as in equation (18).

5 T E S T I N G U S I N G MO N T E C A R L O
SIMULATION S

In order to test the relative methods for determining errors, we
have created Monte Carlo simulations for a model matching that of
Dodelson & Schneider (2013). Here, we assume that each data vec-
tor comprised of nb values is independently drawn from a standard
Gaussian distribution (mean = 0, variance = 1) and that ns of these
data vectors are used to calculate a covariance matrix. The covari-
ance matrix is allowed to include ‘apparent’ correlations between
different data points, even though the true covariance matrix is di-
agonal. From any set of data, the parameter we wish to estimate
is the average pα , which has the expected value E(pα) = 0 and
true variance 1/nb. The one-dimensional true Fisher matrix and its
inverse are therefore Fαα = nb, F−1

αα = 1/nb.
We have created 105 Monte Carlo runs for every nb and ns tested,

averaging the measurements over all runs to provide our results. For
each run, we created a set of ns data vectors from which we calcu-
lated the covariance matrix and a set of ns independent data vectors,
which we used to test the fit. All of these data (both dependent and
independent data sets) were fitted using the estimated covariance
matrix, using equation (1) to estimate the likelihood. We therefore
performed 2ns likelihood fits for each run, finding the mean and
variance as described in Section 3. Estimates of the variance de-
rived in different ways from these fits are shown in Fig. 1. We do
not apply any bias corrections to these data, but instead plot them
as if they had been naively used to estimate the true variance.

The average variance of the distribution of best-fitting parameters
recovered from the fits to the independent sets of data are shown
by the open circles in Fig. 1 and are well matched to the formula
derived by Dodelson & Schneider (2013, dot–dashed line, given
by equation 12). These data represent the true error that should be
quoted on measurements. The difference between these data and
the solid line shows the extra variance introduced by the noisy
covariance matrix estimate.

If we estimate the variance using the likelihood, or using the
distribution of data also used to estimate the covariance matrix, we
find a biased value. The average variance recovered by integrating
over the likelihood as in equation (14) is plotted in Fig. 1 (solid
circles) – the root of these values is commonly quoted as parameter
errors in analyses. As described in Section 3, for parameters that
linearly depend on the data (or in the standard approximation around
the likelihood maxima), the best-fitting value around which we
measure the variance does not matter. Thus, we recover exactly the
same likelihood errors in our model whether we use the independent
data or the data also used to estimate the covariance matrix. These
estimates are biased and the offset is well matched to equation
(17), which is indicated by the dashed line in the plots. The solid
triangles show the variance estimated from the distribution of best-
fitting values recovered from the same data set used to calculate the
covariance matrix. These points are well matched to the dotted line,

Figure 1. Estimated variance for the mean of nb independent standard
Gaussian random variables. The symbols show the estimated variance, av-
eraged over 105 runs, each using ns data vectors to calculate the covariance
matrix. The solid circles show the average variance, calculated from the
ns likelihood-distribution-derived fitting to ns independent data vectors (see
Section 3), open circles from the distribution of best-fitting solutions re-
covered from these data (see Section 2), and the solid triangles from the
distribution of best-fitting solutions when the same data used to estimate the
covariance matrix is fitted (see Section 4). No corrections were applied to
these estimates – i.e. we assumed that parameters A, B, or D were zero when
making these variance estimates. The lines show the true data-only variance
(solid), and the result after including the first-order theoretical corrections
to the variance from the covariance matrix contribution (dot–dashed), the
average variance estimated naively from the likelihood (dashed) and from
the distribution of data values that were also used to calculate the covariance
matrix (dotted).
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Including covariance matrix errors in BOSS 2535

calculated using the formula given in Section 4. As can be seen,
this estimate of the variance is biased low, as a consequence of the
offset between the estimated covariance and the inverse covariance
matrix as given by the extra factor in m2 compared with m1.

In this plot, the factor m1 is the ratio between the dashed and
dot–dashed lines, and m2 is the ratio between the dotted and dot–
dashed lines. These factors correct these estimates to produce the
true combined error (dot–dashed line) including both the standard
variance and the effect of the noisy covariance matrix.

6 C O S M O L O G I C A L M E A S U R E M E N T S W I T H
B OSS TWO-POINT STATISTICS

6.1 Estimating the covariance matrix from mocks

We now apply the calculations described above to investigate cos-
mological measurements made with the power spectrum and corre-
lation function from BOSS. In this work, we focus on the CMASS
galaxy sample, although our results could also be applied to the
LOWZ sample. BOSS (Dawson et al. 2013) is part of the Sloan
Digital Sky Survey-III (SDSS-III; Eisenstein et al. 2011) project,
which used the SDSS telescope (Gunn et al. 2006) to obtain imag-
ing (Gunn et al. 1998) and spectroscopic (Smee et al. 2013) data,
which was then reduced (Bolton et al. 2012) to provide a sample of
galaxy redshifts, with known mask. We focus on the BAO method-
ology described in Anderson et al. (2012, 2013) and Anderson et al.
(2013b) and the redshift-space distortion (RSD) methodology of
Reid et al. (2012) and Samushia et al. (2013).

In Anderson et al. (2012) and Reid et al. (2012), we used
600 PTHaloe mock catalogues to analyse the BOSS DR9 sample,
both to understand the analysis methodology and to determine co-
variance matrices for the two-point measurements. These mock cat-
alogues were created as described in Manera et al. (2013). Briefly,
600 second-order Lagrangian perturbation theory (2LPT) matter
fields were created in boxes of size L = 2400 h−1 Mpc, sampled by
12803 dark matter particles. Within these boxes, haloes were found
with a friends-of-friends group finder (Davis et al. 1985) with appro-
priate linking length, and their masses were calibrated by detailed
comparisons with N-body simulations. The haloes were populated
with mock galaxies using a halo occupation distribution (Peacock
& Smith 2000; Berlind & Weinberg 2002; Cooray & Sheth 2002)
prescription, which was calibrated to reproduce the clustering mea-
surements on scales between 30 and 80 h−1 Mpc. Mock catalogues
were then created by sampling these boxes to match the geometry
and efficiency of the project. Mock catalogues have also been drawn
from these boxes for the DR10 (Ahn et al. 2013) and DR11 sam-
ples used in Anderson et al. (2013b) to measure the BAO positions
(Manera et al. 2013).

In order to create the mocks, we treat the northern Galactic cap
(NGC) and southern Galactic cap (SGC) components of the survey
as being independent and sample them separately from the same set
of boxes. For the DR9 analysis, we could easily sample the north and
south components of the survey from the 600 boxes without overlap,
giving 600 NGC mocks and 600 SGC mocks that are independent.
Given the volume covered by the DR10 and DR11 BOSS CMASS
galaxy samples, we could not easily sample both parts of the survey
from each box without overlap, meaning that the NGC and SGC
mocks drawn from the same box are not independent. To construct
joint NGC+SGC mocks, we sample the NGC from one subset
of 300 simulations and combine these with samples of the SGC
from the remaining independent simulations. An equivalent set of
combined mocks can be created by instead sampling the SGC from

Table 1. The effective areas of the DR9, DR10, and DR11
BOSS CMASS galaxy samples, and the overlap areas when
mocks are sampled from the same parent box. r is the corre-
lation coefficient between estimators, and (1 + r2)/2 reflects
the reduction of the covariance errors when the estimators are
combined.

Sample Area (deg2) r (1 + r2)/2
NGC SGC Overlap

DR9 2584 690 28 0.016 0.50
DR10 4817 1345 1006 0.33 0.55
DR11 6308 2069 2069 0.49 0.62

the first subset of 300 simulations and the NGC from the remaining
300 simulations. While both of these sets should provide unbiased
estimates of the covariance matrix, they are in principle correlated
with each other, as the set of NGC mocks used to calculate one is
correlated with the set of SGC mocks used to calculate the other.
We then estimate the covariance matrix for the joint NGC+SGC
power spectrum as the average from these two, each calculated from
300 (NGC+SGC) mock power spectra. The final equation for our
covariance matrix is

2Ĉij = 1

299

∑
m<300

[P m
i (k) − P̄i(k)][P m

j (k) − P̄j (k)]

+ 1

299

∑
m>300

[P m
i (k) − P̄i(k)][P m

j (k) − P̄j (k)], (23)

where P m
i (k) is the measured power spectrum from mock m in

bin i, and P̄i(k) is the mean calculated separately for each set of
300 mocks. A similar equation is used to calculate the covariance
matrix for the correlation function. Although this approach produces
an unbiased estimate of the covariance matrix, the two contributions
are correlated, so the sum would not produce the

√
2 reduction

in noise in the covariance matrix as would be expected for the
combination of independent estimates, if we could approximate
components as being Gaussian.

In fact, for DR9, when projected into the mock boxes, the NGC
and SGC components of the survey only have a small overlap and
we were therefore justified in treating both sets of mocks as indepen-
dent. However, for DR10, the overlap is approximately 75 per cent
of the area covered by the SGC, while for DR11, the entire southern
component is also covered by the NGC (see Table 1). If we assume
that the variance on the measurement is proportional to the inverse
of the effective volume Veff, the correlation coefficient between
(NGC+SGC) mock measurements with overlapping NGC and SGC
components, so that the NGC for one overlaps with the SGC of the
other, and vice-versa, is given by r = 2Voverlap/(VNGC + VSGC). The
degree of overlap above results in r = 0.33 for DR10 and r = 0.49
for DR11. Again, to be explicit, this correlation coefficient repre-
sents how strongly the power spectrum error in one mock correlates
with that in another mock, where the two mocks sample either
NCG+SCG or SGC+NGC from two simulations.

Ultimately, we are interested in how these correlations impact the
covariance error resulting from the combined estimator of equation
(23), compared to the covariance error which arises from using a
single set of 300 mock catalogues. We find that the power spectrum
correlation propagates into the combined covariance error, which
we effectively model by rescaling the error terms given by A, B and
D in equations (8) and (6) by a factor of (1 + r2)/2, which is that
standard formula for the variance of the average of two correlated
random variables. In the limit of large ns, the B term dominates
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over the A term in equation (8); this is equivalent to rescaling the
number of simulations by a factor of 2/(1 + r2). Thus, for DR9,
where the correlations are negligible, the effect is simply to increase
the effective number of simulations by a factor of 2, as one might
expect.

6.2 Application to DR9 BAO measurements

Error bars for the BAO measurements presented in Anderson et al.
(2012) were derived from the likelihood calculated from fitting ei-
ther the isotropically averaged power spectrum or correlation func-
tion with a model that marginalizes out the broad-band components
of the two-point functions, leaving the BAO whose scale can be mea-
sured. For the power spectrum analysis of Anderson et al. (2012),
we fitted 70 band powers with a model including 11 parameters,
and neither the correction shown in equation (6) nor the factor in
equation (18) were applied to the inverse covariance matrix. Both
the factors are of the order of 10 per cent and act to increase the
size of the variance from the raw value measured. The quoted errors
on the power spectrum-based BAO position measurements pro-
vided in Anderson et al. (2012) should therefore be increased by
12 per cent given the current analysis: i.e. post-reconstruction, we
quoted α = 1.042 ± 0.016, but these will change with the current
error analysis to α = 1.042 ± 0.018.

For the correlation function analysis of Anderson et al. (2012),
we fitted 44 binned points 28 < r < 200 h−1 Mpc, using a model
with five free parameters. As with the fits based on the power
spectrum, error bars were derived from the likelihood, and neither
the correction to the inverse covariance matrix estimate (equation
6) nor the correction because of the error in the covariance matrix
(equation 18) were applied. Because of the reduced number of bins
and degrees of freedom, the corrections are slightly smaller than in
the power spectrum case, and are of the order of 4 and 3 per cent,
respectively, for the error. The errors on the correlation function-
based BAO position measurements provided in Anderson et al.
(2012) would therefore need to be increased by 7 per cent given
the current analysis: i.e. post-reconstruction, Anderson et al. (2012)
quoted α = 1.024 ± 0.016, but these values will change with the
current error analysis to α = 1.024 ± 0.017.

6.3 Application to DR10 and DR11 monopole power
spectrum BAO measurements

The default BOSS DR10 analysis presented in Anderson et al.
(2013b) uses 600 mocks, calculated as for DR9, but with an updated
angular mask. We have measured the power spectrum for each
of these mocks after reconstruction, using the standard pipeline
described in Anderson et al. (2012). Each power spectrum was
binned into a large number of fine bins, which were then combined
to produce results for various numbers of bins within the range of
scales fitted 0.02 < k < 0.3 h−1 Mpc. For each binning choice, we
have estimated the covariance matrix, and window function, and
used these to fit the data with a model given by

P fit(k) = P sm(k)[1 + (O lin(k/α) − 1)e− 1
2 k2	2

nl ], (24)

where the BAO scale α and the damping 	nl are parameters, and
Psm(k) is a smooth model for the broad-band shape of the power
spectrum, and Olin(k) are the BAO extracted from the linear power
spectrum Plin(k) = Olin(k)Psm,lin(k). We have changed the fitting
method from that in Anderson et al. (2012) in two key ways:

(i) we fit band powers in log P(k), which was shown to be close
to having a multivariate Gaussian distribution in Ross et al. (2013),
as expected in the sample-variance limited regime.

(ii) we use a model for the broad-band power spectrum

P sm(k) = B2
pP (k)sm,lin + A1k + A2 + A3

k
+ A4

k2
+ A5

k3
, (25)

which is better matched to that used for the correlation function than
the P(k) model used in Anderson et al. (2012). Our final model has
six ‘nuisance’ parameters, Bp, A1, A2, A3, A4, and A5; see Anderson
et al. (2013b) and Ross et al. (2014) for further discussion of this
issue.

For each mock, we have determined the best-fitting value of α

and σ 2
α by marginalizing over the other parameters using the derived

likelihood. In this calculation, we assumed a Gaussian prior on 	nl

of ±2 centred on the best-fitting values determined by fitting the
average recovered power spectrum. In principle, the BOSS data
alone can measure this parameter simultaneously with the BAO
scale measurement, albeit at the expense of an increase in the error.
In fact, we have a strong prior from theory about the amplitude of
this damping, which we include to reduce the impact on the BAO
scale error (for more details see Anderson et al., in preparation).

We need to apply the corrections determined in Section 3 to the
errors derived from the likelihood and, as the covariance matrix
was also calculated from the same mocks used to determine the
covariance matrix, the correction of Section 4 to the distribution
of best-fitting values. The resulting measurements of the expected
error on α are shown in Fig. 2 as a function of the number of bins in
the fitted range 0.02 < k < 0.3 h Mpc−1. The upper sets of points and
lines represent pre-reconstruction, with the lower set, corresponding
to the more accurate fits, representing post-reconstruction.

The raw errors from these calculations are shown as the open
(from the likelihood) and solid (from the distribution) circles, with
the results after correction represented by the lines. The lower panel
presents the percentage deviation of the mean, calculated from all of
the mocks for different numbers of bins. This represents a systematic
error on the recovered value of α.

From Fig. 2, we see that, after correction, the values of the errors
recovered from the distribution and from the likelihood agree to a
higher degree than before correction, particularly for small values
of the bin width. There is an error on this match that results from
the error in the covariance matrix, with the data from different
bin widths being highly correlated. We expect this error to be of
the same order as the difference between the corrections applied
to the likelihood- and distribution-based errors as this difference
results from the offset within the Wishart distribution from which
the covariance matrix is derived (see Section 1). It therefore gives
a crude estimate for the width of this distribution. This reasoning
shows that the differences between corrected errors derived in the
different ways are consistent.

Without correction, the statistical errors recovered from both
methods decrease with increasing bin width, naively suggesting
that increasing the number of bins increases the information con-
tent. In fact, the post-correction errors increase for small bin widths,
demonstrating that we are simply transferring data noise into co-
variance matrix noise as we increase the number of bins, which is
not appearing in the raw error calculation. After correction, the re-
covered errors are reassuringly independent of bin width for a wide
range of bin widths. For small numbers of bins, the mean offset
measured in the BAO location is small compared with the statistical
errors, and is of the order of 0.4 per cent for the pre-reconstruction
fits, while it is consistent with zero post-reconstruction, with an error
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Including covariance matrix errors in BOSS 2537

Figure 2. Top panels: recovered errors from the best-fitting values of α calculated by fitting the BAO as described in Anderson et al. (2012), but for the BOSS
DR10 (left) and DR11 (right) mock samples (Manera et al. 2014). The solid circles and the solid line were determined from the likelihood, as described in
Section 3, while open circles and the dashed line were calculated from the distribution of values recovered from the mocks as described in Section 4. The
points represent the ‘raw’, uncorrected values, while the lines show the values after correcting for the covariance matrix. Lower panel: percentage error on the
mean value of α recovered from the mocks.

of 0.04 per cent for all bin widths. The size of the systematic offset
is not dependent on the bin width, giving us confidence that we are
correctly modelling the binning effects. The low amplitude of the
systematic errors post-reconstruction strongly suggests that we do
not have any systematic biases due to the survey mask, our mod-
elling of the resulting window function, or effects from the galaxy
bias as implemented within the PTHaloes methodology (Manera
et al. 2013).

Comparing both the offset in the mean value recovered and the
recovered errors indicates that the optimum number of bins for the
power spectrum analysis over 0.02 < k < 0.3 h Mpc−1 is approxi-
mately 35 with bin width 0.008 h Mpc−1, half the number of bins
used in the DR9 analysis of Anderson et al. (2012). For such a small
number of bins, the corrections required for the derived errors are
small: equation (18) suggests that the likelihood derived errors need
to increase by

√
m1 ∼ 3 per cent.

6.4 Application to DR10 and DR11 monopole correlation
function BAO measurements

We have performed a similar analysis to determine the optimum bin
size for the BAO fits to the isotropic correlation function. Following
the methodology adopted for Anderson et al. (2013b), we fix the
BAO damping scale, leaving a five-parameter model composed of
α and a four-parameter broad-band model that is similar to that
described for the power spectrum in the previous section,

ξfit(s) = B2
ξ ξ

mod(αs) + a1

s2
+ a2

s
+ a3. (26)

Here, ξmod is the Fourier transform of a linear model for the cor-
relation function with damped BAO (see Anderson et al. 2013b
for more details), and ai with (1 < i < 3) are free parameters that
marginalize over the broad-band signal. Because the BAO signal
in the correlation function does not extend to non-linear scales to
the same extent as in the power spectrum, the broad-band model
can be added to the linear correlation function, which includes the
BAO signal, rather than multiplying the BAO as in the P(k) model
(equation 24). This leaves a correlation function model with more
freedom to dampen the BAO. Thus, for our correlation function
fits, we fix 	2

nl rather than including it as a free parameter with a
Gaussian prior as for the power spectrum. The consequences of this
difference are discussed further in Anderson et al. (2013b).

As for the power spectrum, we have fitted all 600 mocks using
this model to determine a likelihood distribution for each. From this
exercise, we have derived best-fitting values and expected errors
on α, marginalizing over other parameters. We have also estimated
the width of the distribution of recovered best-fitting values, taking
care to produce an unbiased estimate by splitting the mocks into
two sets of 300 independent measurements. The resulting errors,
plotted as a function of number of bins, are shown in Fig. 3. The
difference between results from the likelihood and the distribution
are similar to those for the power spectrum fits. The size of these
discrepancies are similar to the correction applied and as such may
simply be a statistical deviation within the expected distribution.
The results from different bin choices are obviously correlated to a
high degree. We do not attempt to estimate the error on the correction
that we are applying to the error – i.e. the error on the error on the
error.
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2538 W. J. Percival et al.

Figure 3. As Fig. 2, but now for the fits to the correlation function.

Fig. 3 reveals a flat minimum, with bins of width 6–10 h−1 Mpc
all providing similar final errors on the BAO scale. We therefore
recommend that the monopole of the correlation function, when
fitted independently, be binned with width 8 h−1 Mpc. There is no
evidence that binning on these scales induces a systematic error due
to the coarseness of the averaging.

6.5 Application to DR11 anisotropic BAO measurements

We have also considered fits to the monopole and quadrupole mo-
ments of the correlation function using the methodology applied in
Anderson et al. (2013a) and Anderson et al. (2013b). For simplicity
we only present results from the DR11 data, although similar results
are produced for DR10. Additionally, similar results are observed
for fits to ‘Wedges’: top-hat averages of the anisotropic correlation
function in the cosine of the angle to the line of sight (for more
information see Kazin et al. 2013).

Fig. 4 presents the average errors on α⊥ and α‖ from the fits to
the 600 mocks as a function of bin size. As in Fig. 2, these errors are
shown with and without the correction factors for the error in the
covariance matrix. The behaviour of the fits in the anisotropic case
is quite similar to those from just fitting the monopole of the corre-
lation function (Fig. 3). The minimum is quite broad, just pushing
to slightly larger bin sizes than the monopole-only fits. Given our
preference, for simplicity, we adopt a bin size of 8 h−1 Mpc for fits
to both monopole only or monopole and quadrupole, rather than
using a different bin for the two measurements.

The likelihood-based and distribution-based results are well
matched after correcting for the covariance matrix effects, as for the
monopole-only fits. There is some evidence for a small ∼0.5 per cent
systematic offset on α‖, which was also seen in Anderson et al.
(2013a). There is also evidence for ‘oscillatory behaviour’ of the
errors as a function of bin width, which is particularly apparent for

the post-reconstruction fits. For our binning scheme, as we increase
the bin width, we also alter the positions of the bin centres. The
ability to fit the position of the BAO is very sensitive to the bin
centre for bins that cover the BAO signal and are large compared to
that signal. This leads to variations in the recovered errors as seen.
We also see an increase in the systematic offset for large bins, which
is coupled to this lack of resolution. Clearly, it is desirable that this
region is avoided.

6.6 Application to DR11 RSD measurements

We now extend the analysis to consider RSD measurements made
from joint fits to the monopole and quadrupole moments of the
correlation function. We limit the analysis to have the same bin
width for both and consider how this choice affects the error on the
final measurement. For this analysis, we have three free parameters.

(i) The amplitude of the real-space galaxy power spectrum, quan-
tified by b(0.57)σ 8(0.57), where σ 8(z) is the root-mean-square am-
plitude of overdensity fluctuations in spheres of radius 8 h−1 Mpc.

(ii) The amplitude of the velocity field, which controls the RSD
amplitude and is quantified by

f (0.57)σ8(0.57) = σ8(0)
dG

d ln a

∣∣∣∣
z=0.57

, (27)

where G(z) is the linear growth rate.
(iii) The width of the Gaussian probability distribution function

assumed to model the non-linear Fingers of God, σ FOG.

Further details about these parameters can be found in Samushia
et al. (2013). For speed, given the number of fits to be performed,
unlike in Samushia et al. (2013), we do not allow the shape of the
real-space power spectrum or the two dilation parameters α‖ and
α⊥ that control the radial and angular projections to vary and fix

MNRAS 439, 2531–2541 (2014)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/439/3/2531/1092403 by M
issouri U

niversity of Science and Technology user on 14 January 2019



Including covariance matrix errors in BOSS 2539

Figure 4. As Fig. 2, but now for BAO fits to monopole and quadrupole moments of the correlation function as described in Anderson et al. (2013b), now
allowing for a different dilation of scale in the radial (α‖) and angular (α⊥) directions.

them at their true values. We do not expect this decision to alter our
conclusions significantly given that this shape is highly constrained
by the recent Planck results (Planck Collaboration 2013).

The results of our fits can be seen in Fig. 5, where we compare
the standard deviations of the distribution of recovered values of
fσ 8 against bin width. For each fit, we do not attempt to map the full
likelihood, but instead use a minimization routine to find the max-
imum of the likelihood in parameter space. Thus, we only present
results from the distribution of recovered best-fitting values. Given
the similarity between results derived from individual likelihood
distributions, and from the distributions presented in Sections 6.3
and 6.4, we believe that this approach is sufficient to determine the
best bin width.

As can be seen in Fig. 5, for narrow bin width where large num-
bers of bins are used in the covariance matrix, there is an increase
in the corrected error as for the BAO fits. There is no increase to
large bin widths because the RSD measurement is effectively an
amplitude determination unlike BAO fitting, which is a centroid-
ing problem, and therefore large bin widths are more detrimental.
Thus, RSD measurements are less sensitive to the bin width chosen.
Most RSD determinations (e.g. Reid et al. 2012) perform a joint fit
including the shape of the two-point measurement, and therefore
the best-fitting BAO bin width of ∼8 h−1 Mpc remains an optimal
choice. The systematic errors shown in the lower panel of Fig. 5 are
relatively large compared with those from BAO measurements. The
large errors are partially due to the 2LPT mocks not reproducing the
non-linear evolution of the growth rate exactly. The systematic off-
set would decrease if we fitted a 2LPT model to the measurements
instead of the non-linear streaming model, which is more accurate
for the data (see Samushia et al. 2013 for more details).

Figure 5. As Fig. 2, but now for RSD fits to monopole and quadrupole
moments of the correlation function as described in Samushia et al. (2013).
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7 D ISC U SSION

In this paper, we have reviewed the calculations being performed
using the latest BOSS data in order to extract cosmological mea-
surements. Building upon a series of recent papers examining the
errors in the inverse covariance matrix used in cosmological ap-
plications (Hartlap et al. 2007; Taylor et al. 2012; Dodelson &
Schneider 2013), we have had to derive and understand the effect
of two further errors in two further situations – where the error on
final parameters is calculated by integrating over the derived likeli-
hood and, in order to test the method, the distribution of best-fitting
values recovered from the same set of mocks used to determine the
covariance matrix. These derivations have been tested and shown
to be accurate using Monte Carlo simulations.

To summarize, there are two corrections that must be applied to
the ‘naive’ analysis simply inverting the covariance matrix derived
from equation (4) and using it in equations (1) and (2). First, as
pointed out by Hartlap et al. (2007), we must correct for the offset
nature of the inverse Wishart distribution by correcting the inverse
covariance matrix by the factor given in equation (6). Secondly,
we need to correct for the additional contribution of the error in
the covariance matrix to the final error on a derived parameter.
Three different corrections to create unbiased error estimates exist
in different situations.

(i) If the variance of a measurement is estimated from the distri-
bution of best-fitting values recovered from data that are indepen-
dent of that used to estimate the covariance matrix, the variance on
the result is given in equation (12) (Dodelson & Schneider 2013).
This variance corresponds to the true error on measurement from
data (which are independent from the mocks used to calculate the
covariance matrix).

(ii) If the variance is measured from a likelihood, calculated
from fitting to a set of data (be it from independent mocks, the
same mocks used to estimate the covariance matrix, or the actual
data), we derive a biased estimate of the variance, which is different
from the expression given by equation (12). To correct this bias, we
must apply the correction m1, given in equation (18), to the derived
estimate.

(iii) If the variance is derived from the distribution of best-fitting
values recovered from the same data also used to estimate the co-
variance matrix, we also obtain a biased result and must now apply
the factor m2 given in equation (22) to the estimate.

We have considered how the mocks used to determine the co-
variances for BOSS affect parameter inferences and have shown
how they must be carefully analysed in order to take into account
how they were produced, in particular the overlap between NGC
and SGC components. Having done this, we have not only included
the extra errors in our final measurement errors given in compan-
ion papers (Anderson et al. 2013b; Beutler et al. 2013; Chuang
et al. 2013; Samushia et al. 2013; Sanchez et al. 2013; Tojeiro et al.
2014), but also used the derivation to understand the effect of bin
size on the final errors. We have derived optimal binning strategies
for BAO fits to the monopole correlation function and isotropically
averaged power spectrum, and anisotropic BAO fits and RSD fits to
the monopole and quadrupole moments of the correlation function.
These best-fitting strategies are dependent on the level of preci-
sion achieved within the covariance matrix. If more mocks were
used, or higher precision could be achieved in some other way, then
fits using more bins would become more desirable. However, after
applying all corrections, the isotropically averaged BAO distance
scale error recovered from the mocks is quite independent of bin

size over a broad range of bin widths. This suggests that our best
strategy will not change significantly even with better precision for
the covariance matrix. The lack of sensitivity to bin size is good to
see, as one would hope that the analysis method does not have a
strong effect on the final measurements. The ability to recover the
BAO scale without significant loss of accuracy using large bin sizes
up to 12 h−1 Mpc for ξ (s) is perhaps more surprising, although we
note that the BAO feature is quite broad.

Our analysis on bin sizes demonstrates that, on average, after
correction, the recovered errors derived in multiple ways are a better
match to each other than before correction. However, we caution
that this match depends on the actual noise in the covariance matrix,
which might be expected to be of the same order as the difference
between correction factors. This match also relies on the model
adopted being a good fit to the data. For the fit to BAO positions, it
is clear that a poor model can yield incorrect likelihood errors, while
leaving the distribution of best-fitting values relatively unaffected.
The damping term in equation (24) is critical here – for any fit
to data, if the model is overdamped, the likelihood maximum will
be reduced as the model has more freedom to move, although the
best-fitting location for each mock will generally not change by the
same amount. For an underdamped model, the likelihood maximum
will be increased, although the data themselves do not support such
an apparent improvement in errors, as evidenced by the recovered
distribution of best-fitting values. Further investigation is required,
but is outside of the remit of this paper.

The comparison of BAO measurement errors as a function of
bin size raises the interesting question of why the corrected error
increases for increasing numbers of bins. The covariance matrix
for large numbers of bins obviously still contains all the infor-
mation used with a smaller number of bins, so theoretically you
should be able to extract the same information from it and the
data. As discussed in Section 1, the correct approach is to construct
a joint likelihood of the data and mocks given the cosmological
model to be tested. In the standard Gaussian assumption on the
distributions of mocks and data, this is the same as that given by
equation (5). Marginalizing over the true covariance matrix would
then yield the final likelihood for the parameters given the mocks
– in essence this should be the same for any bin choice for smooth
models, where the binning results in minimal loss of information.
The problem is that we are not performing this optimal likelihood
approach if we assume that the estimated covariance matrix is ‘cor-
rect’ and use the standard likelihood equation (equation 1). In this
approach, the effect of the covariance matrix, and the error it intro-
duces through equation (1), changes with bin size: this dependence
is given in equations (7) and (8), and is propagated through to the
final error on the recovered parameters. Thus, the optimal bin size
is actually only an optimal bin size if you want to retain equa-
tion (1) as the likelihood equation – in this case, the error does
depend on bin size, and the error increases with increasing num-
ber of bins. The increase to large bin sizes can be more easily
understood – here we are simply losing information as the averag-
ing being performed increases in importance, leading to increasing
errors. The minimum in the recovered error balances these two
effects.

In Sections 6.5 and 6.6, we saw that the corrections required to
the combined fits to both the monopole and quadrupole are quite
large for both BAO and RSD measurements. This result suggests
that there are significant gains to be obtained either by creating
more accurate covariance matrices or by reworking the likelihood
calculation to include covariance matrix errors. For future surveys,
this effect will become increasingly important, and having too few
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mocks or too poor a model for the covariance matrix will have a
serious impact on the measurements made.
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