33 research outputs found

    Fuel cycle modelling of open cycle thorium-fuelled nuclear energy systems

    Get PDF
    In this study, we have sought to determine the advantages, disadvantages, and viability of open cycle thorium–uranium-fuelled (Th–U-fuelled) nuclear energy systems. This has been done by assessing three such systems, each of which requires uranium enriched to ∼20% 235U, in comparison to a reference uranium-fuelled (U-fuelled) system over various performance indicators, spanning material flows, waste composition, economics, and proliferation resistance. The values of these indicators were determined using the UK National Nuclear Laboratory’s fuel cycle modelling code ORION. This code required the results of lattice-physics calculations to model the neutronics of each nuclear energy system, and these were obtained using various nuclear reactor physics codes and burn-up routines. In summary, all three Th–U-fuelled nuclear energy systems required more separative work capacity than the equivalent benchmark U-fuelled system, with larger levelised fuel cycle costs and larger levelised cost of electricity. Although a reduction of ∼6% in the required uranium ore per kWh was seen for one of the Th–U-fuelled systems compared to the reference U-fuelled system, the other two Th–U-fuelled systems required more uranium ore per kWh than the reference. Negligible advantages and disadvantages were observed for the amount and the properties of the spent nuclear fuel (SNF) generated by the systems considered. Two of the Th–U-fuelled systems showed some benefit in terms of proliferation resistance of the SNF generated. Overall, it appears that there is little merit in incorporating thorium into nuclear energy systems operating with open nuclear fuel cycles

    Effects of rapid prey evolution on predator-prey cycles

    Full text link
    We study the qualitative properties of population cycles in a predator-prey system where genetic variability allows contemporary rapid evolution of the prey. Previous numerical studies have found that prey evolution in response to changing predation risk can have major quantitative and qualitative effects on predator-prey cycles, including: (i) large increases in cycle period, (ii) changes in phase relations (so that predator and prey are cycling exactly out of phase, rather than the classical quarter-period phase lag), and (iii) "cryptic" cycles in which total prey density remains nearly constant while predator density and prey traits cycle. Here we focus on a chemostat model motivated by our experimental system [Fussmann et al. 2000,Yoshida et al. 2003] with algae (prey) and rotifers (predators), in which the prey exhibit rapid evolution in their level of defense against predation. We show that the effects of rapid prey evolution are robust and general, and furthermore that they occur in a specific but biologically relevant region of parameter space: when traits that greatly reduce predation risk are relatively cheap (in terms of reductions in other fitness components), when there is coexistence between the two prey types and the predator, and when the interaction between predators and undefended prey alone would produce cycles. Because defense has been shown to be inexpensive, even cost-free, in a number of systems [Andersson and Levin 1999, Gagneux et al. 2006,Yoshida et al. 2004], our discoveries may well be reproduced in other model systems, and in nature. Finally, some of our key results are extended to a general model in which functional forms for the predation rate and prey birth rate are not specified.Comment: 35 pages, 8 figure

    Isolation of chromosome clusters from metaphase-arrested HeLa cells

    Full text link
    We have developed a simplified approach for the isolation of metaphase chromosomes from HeLa cells. In this method, all the chromosomes from a cell remain together in a bundle which we call a “metaphase chromosome cluster”. Cells are arrested to 90–95% in metaphase, collected by centrifugation, extracted with non-ionic detergent in a low ionic strength buffer at neutral pH, and homogenised to strip away the cytoskeleton. The chromosome clusters which are released can then be isolated in a crude state by pelleting or they can be purified away from nearly all the interphase nuclei and cytoplasmic debris by banding in a Percoll TM density gradient. — This procedure has the advantages that it is quick and easy, metaphase chromatin is recovered in high yield, and Ca ++ is not needed to stabilise the chromosomes. Although the method does not yield individual chromosomes, it is nevertheless very useful for both structural and biochemical studies of mitotic chromatin. The chromosome clusters also make possible biochemical and structural studies of what holds the different chromosomes together. Such information could be useful in improving chromosome isolation procedures and for understanding suprachromosomal organisation of the nucleus.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47359/1/412_2004_Article_BF00327351.pd

    Intensity-modulated radiotherapy for whole pelvis irradiation in prostate cancer: A dosimetric and plan robustness study between photons and protons

    No full text
    Purpose: To evaluate the dosimetric impact and plan robustness of using Pencil Beam Scanning (PBS) in patients that requires prophylactic pelvic lymph nodes (PLNs) irradiation for prostate cancer. Material and methods: Five intermediate to high-risk prostate patients previously treated using volumetric modulated arc therapy (VMAT), were selected for this study. Comparative proton radiotherapy plans were generated, where a three-field intensity modulated proton therapy (IMPT) plan was for the phase 1 planning target volume (PTV1) with PLNs. A technique with two posterior oblique fields using single field uniform dose (SFUD) was used for phase 2 (PTV2) volume, that comprises of the prostate and proximal seminal vesicles (Pro + proxSVs). Plan evaluation was performed on PTV coverage and dose to the organs at risk (OARs) using VMAT plans as a baseline (BL). Robust analysis on clinical target volume (CTV) coverage for the PBS plans was simulated with a 3 and 5 mm setup errors and a 3.5% range uncertainty. Results: For target coverage, PTV1 and PTV2 showed negligible differences with a comparable homogeneity index (HI) values for both modalities. Proton plans produced a statistically significant lower mean dose to the bladder (32.5 Gy(RBE) vs. 46.5 Gy) and rectum (33.6 Gy(RBE) vs. 42.7 Gy). Dose to the bladder and rectum was equivalent at the high dose region. For the bowel cavity, the mean dose for proton plans were 45% lower compared to VMAT plans. Similarly, proton plans were able to achieve an overall reduction in integral dose for both treatment phase. CTV coverage remained high with all the simulated setup and range errors. Conclusions: Proposed beam geometries for PTV1 and PTV2 proton plans presented good treatment accuracy with similar target coverage as the VMAT plans. Better sparing of OARs was achieved at the low-medium dose region for the proton plans. Keywords: Prostate cancer, Pelvic lymph nodes, VMAT, IMPT, PBS, Robust analysi
    corecore