44 research outputs found

    Regional Management Units for Marine Turtles: A Novel Framework for Prioritizing Conservation and Research across Multiple Scales

    Get PDF
    Background: Resolving threats to widely distributed marine megafauna requires definition of the geographic distributions of both the threats as well as the population unit(s) of interest. In turn, because individual threats can operate on varying spatial scales, their impacts can affect different segments of a population of the same species. Therefore, integration of multiple tools and techniques - including site-based monitoring, genetic analyses, mark-recapture studies and telemetry - can facilitate robust definitions of population segments at multiple biological and spatial scales to address different management and research challenges. Methodology/Principal Findings: To address these issues for marine turtles, we collated all available studies on marine turtle biogeography, including nesting sites, population abundances and trends, population genetics, and satellite telemetry. We georeferenced this information to generate separate layers for nesting sites, genetic stocks, and core distributions of population segments of all marine turtle species. We then spatially integrated this information from fine-to coarse-spatial scales to develop nested envelope models, or Regional Management Units (RMUs), for marine turtles globally. Conclusions/Significance: The RMU framework is a solution to the challenge of how to organize marine turtles into units of protection above the level of nesting populations, but below the level of species, within regional entities that might be on independent evolutionary trajectories. Among many potential applications, RMUs provide a framework for identifying data gaps, assessing high diversity areas for multiple species and genetic stocks, and evaluating conservation status of marine turtles. Furthermore, RMUs allow for identification of geographic barriers to gene flow, and can provide valuable guidance to marine spatial planning initiatives that integrate spatial distributions of protected species and human activities. In addition, the RMU framework - including maps and supporting metadata - will be an iterative, user-driven tool made publicly available in an online application for comments, improvements, download and analysis

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Impairment of Ribosomal Subunit Synthesis in Aminoglycoside-Treated Ribonuclease Mutants of Escherichia coli

    No full text
    The bacterial ribosome is an important target for many antimicrobial agents. Aminoglycoside antibiotics bind to both 30S and 50S ribosomal subunits, inhibiting translation and subunit formation. During ribosomal subunit biogenesis, ribonucleases (RNases) play an important role in rRNA processing. E. coli cells deficient for specific processing RNases are predicted to have an increased sensitivity to neomycin and paromomycin. Four RNase mutant strains showed an increased growth sensitivity to both aminoglycoside antibiotics. E. coli strains deficient for the rRNA processing enzymes RNase III, RNase E, RNase G or RNase PH showed significantly reduced subunit amounts after antibiotic treatment. A substantial increase in a 16S RNA precursor molecule was observed as well. Ribosomal RNA turnover was stimulated, and an enhancement of 16S and 23S rRNA fragmentation was detected in E. coli cells deficient for these enzymes. This work indicates that bacterial RNases may be novel antimicrobial targets

    Inhibition of Ribosomal Subunit Synthesis in Escherichia coli by the Vanadyl Ribonucleoside Complex

    No full text
    The increase in antibiotic-resistant microorganisms has driven a search for new antibiotic targets and novel antimicrobial agents. A large number of different antibiotics target bacterial ribosomal subunit formation. Several specific ribonucleases are important in the processing of rRNA during subunit biogenesis. This work demonstrates that the ribonuclease inhibitor, vanadyl ribonucleoside complex (VRC), can inhibit RNases involved in ribosomal subunit formation. The ribosomal subunit synthesis rate was significantly decreased and ribosomal RNA from the subunit precursors was degraded. VRC had no inhibitory effect on translation. VRC also potentiated the inhibitory effects of an aminoglycoside and a macrolide antibiotic

    The Vanadyl Ribonucleoside Complex Inhibits Ribosomal Subunit Formation in Staphylococcus Aureus

    No full text
    Objectives: The discovery of new antibiotic targets is important to stem the increase in antibiotic resistance to most currently used antimicrobials. The bacterial ribosome is a major target for a large number of antibiotics that inhibit different aspects of translation. Most of these antimicrobial agents also inhibit ribosomal subunit formation as a second cellular target. Precise subunit assembly requires the activity of several distinct RNases for proper rRNA processing. The present work shows that the vanadyl ribonucleoside complex (VRC) inhibited RNases in Staphylococcus aureus involved in ribosomal subunit formation without an effect on translation. Methods: Methicillin-susceptible and -resistant strains of S. aureus were examined for the inhibitory effects of VRC on cell viability by colony counting. Protein synthesis rates were measured by isotopic methionine incorporation. Ribosome synthesis was measured by radiolabelled uridine incorporation into ribosomal subunits as displayed on sucrose gradients. Pulse and chase radiolabelling was used to measure subunit synthesis rates. RNA turnover was determined by a gel on a chip assay. Results: The rates of subunit synthesis and the amounts of both subunits were significantly reduced in the presence of the compound. Ribosomal RNA was degraded and cell viability was reduced as a consequence. VRC also stimulated the inhibitory effects of a macrolide and an aminoglycoside antibiotic on ribosome formation. Conclusions: Bacterial ribosomal subunit synthesis was specifically impaired in VRC-treated cells, with the rates and amounts of both subunits reduced. Cell viability was significantly reduced and rRNA turnover was stimulated

    Solithromycin Inhibition of Protein Synthesis and Ribosome Biogenesis in Staphylococcus aureus, Streptococcus Pneumoniae, and Haemophilus Influenzae

    No full text
    The continuing increase in antibiotic-resistant microorganisms is driving the search for new antibiotic targets and improved antimicrobial agents. Ketolides are semisynthetic derivatives of macrolide antibiotics, which are effective against certain resistant organisms. Solithromycin (CEM-101) is a novel fluoroketolide with improved antimicrobial effectiveness. This compound binds to the large 50S subunit of the ribosome and inhibits protein biosynthesis. Like other ketolides, it should impair bacterial ribosomal subunit formation. This mechanism of action was examined in strains of Streptococcus pneumoniae, Staphylococcus aureus, and Haemophilus influenzae. The mean 50% inhibitory concentrations (IC50s) for solithromycin inhibition of cell viability, protein synthesis, and growth rate were 7.5, 40, and 125 ng/ml for Streptococcus pneumoniae, Staphylococcus aureus, and Haemophilus influenzae, respectively. The net formation of the 50S subunit was reduced in all three organisms, with IC50s similar to those given above. The rates of 50S subunit formation measured by a pulse-chase labeling procedure were reduced by 75% in cells growing at the IC50 of solithromycin. Turnover of 23S rRNA was stimulated by solithromycin as well. Solithromycin was found to be a particularly effective antimicrobial agent, with IC50s comparable to those of telithromycin and significantly better than those of azithromycin and clarithromycin in these three microorganisms

    Judicious DICER1 testing and surveillance imaging facilitates early diagnosis and cure of pleuropulmonary blastoma

    No full text
    Pleuropulmonary blastoma (PPB) and Sertoli-Leydig cell tumor (SLCT) are both associated with germline mutations in DICER1. In this brief report, a maternal history of SLCT led to identification of a deleterious DICER1 mutation in the patient and her asymptomatic infant. Radiographic screening revealed a large Type I PPB which was completely resected. Identification of DICER1 mutation carriers and imaging of children at risk for PPB may allow detection of PPB in its earliest and most curable form, leading to increased likelihood of surgical cure and decreased risks of treatment-related late effects

    Programmed Death-1 Affects Suppressor of Cytokine Signaling-1 Expression in T Cells During Hepatitis C Infection

    No full text
    Chronic hepatitis C virus (HCV) infection is associated with T-cell exhaustion that is mediated through upregulation of the PD-1 negative regulatory pathway. PD-1 expression is induced by HCV core protein, which also induces upregulation of SOCS-1, a key modulator that controls the Jak/STAT pathway regulating cytokine expression. To determine whether these two negative regulatory pathways are linked during T-cell signaling, SOCS-1 expression was examined by blocking the PD-1 pathway in T cells stimulated with anti-CD3/CD28 in the presence of HCV core protein. T cells isolated from healthy subjects or HCV-infected individuals were treated with anti-PD-1 or anti-PDL-1 antibodies in the presence or absence of HCV core protein, and SOCS-1 gene expression was detected by RT-PCR or immunoblotting, while T-cell functions were assayed by flow cytometric analyses. Both PD-1 and SOCS-1 gene expression were upregulated in healthy T cells exposed to HCV core protein, and blocking the PD-1 pathway downregulated SOCS-1 gene expression in these cells. Additionally, T cells isolated from chronically HCV-infected subjects exhibited increased PD-1 and SOCS-1 expression compared to healthy subjects, and SOCS-1 expression in T cells isolated from HCV-infected subjects was also inhibited by blocking PD-1 signaling; this in turn enhanced the phosphorylation of STAT-1, and improved the impaired T-cell proliferation observed in the setting of HCV infection. These data demonstrate that PD-1 and SOCS-1 are linked in dysregulating T-cell signaling during HCV infection, and their cross-talk may coordinately inhibit T-cell signaling pathways that lead to T-cell exhaustion during chronic viral infection
    corecore