75 research outputs found

    Estimation of the Health Impact and Cost-Effectiveness of Influenza Vaccination with Enhanced Effectiveness in Canada

    Get PDF
    INTRODUCTION: The propensity for influenza viruses to mutate and recombine makes them both a familiar threat and a prototype emerging infectious disease. Emerging evidence suggests that the use of MF59-adjuvanted vaccines in older adults and young children enhances protection against influenza infection and reduces adverse influenza-attributable outcomes compared to unadjuvanted vaccines. The health and economic impact of such vaccines in the Canadian population are uncertain. METHODS: We constructed an age-structured compartmental model simulating the transmission of influenza in the Canadian population over a ten-year period. We compared projected health outcomes (quality-adjusted life years (QALY) lost), costs, and incremental cost-effectiveness ratios (ICERs) for three strategies: (i) current use of unadjuvanted trivalent influenza vaccine; (ii) use of MF59-adjuvanted influenza vaccine adults ≥65 in the Canadian population, and (iii) adjuvanted vaccine used in both older adults and children aged < 6. RESULTS: In the base case analysis, use of adjuvanted vaccine in older adults was highly cost-effective (ICER = 2111/QALYgained),butsuchaprogramwas"dominated"byaprogramthatextendedtheuseofadjuvantedvaccinetoincludeyoungchildren(ICER = 2111/QALY gained), but such a program was "dominated" by a program that extended the use of adjuvanted vaccine to include young children (ICER = 1612/QALY). Results were similar whether or not a universal influenza immunization program was used in other age groups; projections were robust in the face of wide-ranging sensitivity analyses. INTERPRETATION: Based on the best available data, it is projected that replacement of traditional trivalent influenza vaccines with MF59-adjuvanted vaccines would confer substantial benefits to vaccinated and unvaccinated individuals, and would be economically attractive relative to other widely-used preventive interventions

    Optimal Pandemic Influenza Vaccine Allocation Strategies for the Canadian Population

    Get PDF
    BACKGROUND: The world is currently confronting the first influenza pandemic of the 21(st) century. Influenza vaccination is an effective preventive measure, but the unique epidemiological features of swine-origin influenza A (H1N1) (pH1N1) introduce uncertainty as to the best strategy for prioritization of vaccine allocation. We sought to determine optimal prioritization of vaccine distribution among different age and risk groups within the Canadian population, to minimize influenza-attributable morbidity and mortality. METHODOLOGY/PRINCIPAL FINDINGS: We developed a deterministic, age-structured compartmental model of influenza transmission, with key parameter values estimated from data collected during the initial phase of the epidemic in Ontario, Canada. We examined the effect of different vaccination strategies on attack rates, hospitalizations, intensive care unit admissions, and mortality. In all scenarios, prioritization of high-risk individuals (those with underlying chronic conditions and pregnant women), regardless of age, markedly decreased the frequency of severe outcomes. When individuals with underlying medical conditions were not prioritized and an age group-based approach was used, preferential vaccination of age groups at increased risk of severe outcomes following infection generally resulted in decreased mortality compared to targeting vaccine to age groups with higher transmission, at a cost of higher population-level attack rates. All simulations were sensitive to the timing of the epidemic peak in relation to vaccine availability, with vaccination having the greatest impact when it was implemented well in advance of the epidemic peak. CONCLUSIONS/SIGNIFICANCE: Our model simulations suggest that vaccine should be allocated to high-risk groups, regardless of age, followed by age groups at increased risk of severe outcomes. Vaccination may significantly reduce influenza-attributable morbidity and mortality, but the benefits are dependent on epidemic dynamics, time for program roll-out, and vaccine uptake

    Respiratory Virus Infection and Risk of Invasive Meningococcal Disease in Central Ontario, Canada

    Get PDF
    BACKGROUND: In temperate climates, invasive meningococcal disease (IMD) incidence tends to coincide with or closely follow peak incidence of influenza virus infection; at a seasonal level, increased influenza activity frequently correlates with increased seasonal risk of IMD. METHODS: We evaluated 240 cases of IMD reported in central Ontario, Canada, from 2000 to 2006. Associations between environmental and virological (influenza A, influenza B and respiratory syncytial virus (RSV)) exposures and IMD incidence were evaluated using negative binomial regression models controlling for seasonal oscillation. Acute effects of weekly respiratory virus activity on IMD risk were evaluated using a matched-period case-crossover design with random directionality of control selection. Effects were estimated using conditional logistic regression. RESULTS: Multivariable negative binomial regression identified elevated IMD risk with increasing influenza A activity (per 100 case increase, incidence rate ratio = 1.18, 95% confidence interval (CI): 1.06, 1.31). In case-crossover models, increasing weekly influenza A activity was associated with an acute increase in the risk of IMD (per 100 case increase, odds ratio (OR)  = 2.03, 95% CI: 1.28 to 3.23). Increasing weekly RSV activity was associated with increased risk of IMD after adjusting for RSV activity in the previous 3 weeks (per 100 case increase, OR = 4.31, 95% CI: 1.14, 16.32). No change in disease risk was seen with increasing influenza B activity. CONCLUSIONS: We have identified an acute effect of influenza A and RSV activity on IMD risk. If confirmed, these finding suggest that influenza vaccination may have the indirect benefit of reducing IMD risk

    The IDEA model: A single equation approach to the Ebola forecasting challenge

    No full text
    Mathematical modeling is increasingly accepted as a tool that can inform disease control policy in the face of emerging infectious diseases, such as the 2014–2015 West African Ebola epidemic, but little is known about the relative performance of alternate forecasting approaches. The RAPIDD Ebola Forecasting Challenge (REFC) tested the ability of eight mathematical models to generate useful forecasts in the face of simulated Ebola outbreaks. We used a simple, phenomenological single-equation model (the “IDEA” model), which relies only on case counts, in the REFC. Model fits were performed using a maximum likelihood approach. We found that the model performed reasonably well relative to other more complex approaches, with performance metrics ranked on average 4th or 5th among participating models. IDEA appeared better suited to long- than short-term forecasts, and could be fit using nothing but reported case counts. Several limitations were identified, including difficulty in identifying epidemic peak (even retrospectively), unrealistically precise confidence intervals, and difficulty interpolating daily case counts when using a model scaled to epidemic generation time. More realistic confidence intervals were generated when case counts were assumed to follow a negative binomial, rather than Poisson, distribution. Nonetheless, IDEA represents a simple phenomenological model, easily implemented in widely available software packages that could be used by frontline public health personnel to generate forecasts with accuracy that approximates that which is achieved using more complex methodologies. Keywords: Ebola virus disease, Mathematical modeling, Forecastin

    Screen more or screen more often? Using mathematical models to inform syphilis control strategies

    No full text
    Abstract Background Syphilis incidence among men who have sex with men (MSM) continues to rise despite attempts to increase screening and treatment uptake. We examined the marginal effect of increased frequency versus increased coverage of screening on syphilis incidence in Toronto, Canada. Methods We developed an agent-based, network model of syphilis transmission, representing a core population of 2,000 high-risk MSM. Epidemiological and biological parameters were drawn from regional surveillance data and literature-derived estimates. The pre-intervention period of the model was calibrated using surveillance data to identify 1000 credible simulations per strategy. Evaluated strategies included: annual syphilis screening at baseline coverage, increased screening frequency at baseline coverage, and increased coverage of annual screening. Intervention impact was measured as annual prevalence of detected infectious cases and syphilis incidence per year over 10 years. Results Of the strategies evaluated, increasing the frequency of syphilis screening to every three months was most effective in reducing reported and incident syphilis infections. Increasing the fraction of individuals tested, without increasing test frequency, resulted a smaller decline in incidence, because reductions in infectious syphilis via treatment were counterbalanced by increased incident syphilis among individuals with prior latent syphilis. For an equivalent number of additional tests performed annually, increased test frequency was consistently more effective than improved coverage. Conclusions Strategies that focus on higher frequency of testing in smaller fractions of the population were more effective in reducing syphilis incidence in a simulated MSM population. The findings highlight how treatment-induced loss of immunity can create unexpected results in screening-based control strategies

    Parameter values used in model. Parameters used in the sensitivity analysis were drawn from uniform distributions with the plausible ranges indicated.

    No full text
    <p>Parameter values used in model. Parameters used in the sensitivity analysis were drawn from uniform distributions with the plausible ranges indicated.</p

    Estimated pertussis vaccine coverage at 7 years of age.

    No full text
    <p><sup>a</sup> McWha L, MacArthur A, Badiani T, Schouten H, Tam T, et al. (2004) Measuring up: results from the National Immunization Coverage Survey, 2002. Can Commun Dis Rep 30: 37–50.</p

    Estimated under-report of pertussis by age group.

    No full text
    <p>The model predicted ratio of underlying pertussis cases per laboratory-confirmed case was calculated based on reported cases for the Greater Toronto Area between 1993 and 2004. Results are presented on a logarithmic scale. For each age group, the minimum, mean, and maximum number of model predicted undetected cases for every reported case are displayed.</p

    Model calibration to cumulative and annual pertussis incidence in the 1993–2004 vaccine era.

    No full text
    <p>Cases confirmed by the Public Health Laboratory —Toronto and the Hospital for Sick Children are shown in black and model predicted incidence of detected cases for the four age groups (under 2 months old, 2–4 months old, 4–6 months old, 6–24 months old) is shown in grey.</p
    • …
    corecore