27 research outputs found

    At-home blood collection and stabilization in high temperature climates using home RNA

    Get PDF
    Expanding whole blood sample collection for transcriptome analysis beyond traditional phlebotomy clinics will open new frontiers for remote immune research and telemedicine. Determining the stability of RNA in blood samples exposed to high ambient temperatures (\u3e30°C) is necessary for deploying home-sampling in settings with elevated temperatures (e.g., studying physiological response to natural disasters that occur in warm locations or in the summer). Recently, we have develope

    Interfacial Tension Driven Open Droplet Microfluidics

    No full text
    Abstract Droplet microfluidics enables compartmentalized reactions in small scales and is utilized for a variety of applications across chemical analysis, material science, and biology. While droplet microfluidics is a successful technology, barriers include high “activation energy” to develop custom applications and complex peripheral equipment. These barriers limit the adoption of droplet microfluidics in labs or prototyping environments. This work demonstrates for the first time an open channel droplet microfluidic system that autonomously generates droplets at low capillary numbers. Hundreds of droplets are produced in a run using only an open channel, pipettes, and a commercially available carrier fluid. Conceptual applications that showcase the process of droplet generation, splitting, transport, incubation, mixing, and sorting are demonstrated. The open nature of the device enables the use of physical tools such as tweezers and styli to directly access the system; with this, a new method of droplet sorting and transfer unique to open systems is demonstrated. This platform offers enhanced usability, direct access to the droplet contents, easy manufacturability, compact footprint, and high customizability. This design is a first step in exploring the space of power‐free open droplet microfluidic systems and provides design rules for similar channel designs

    Multikingdom microscale models.

    No full text

    Effect of Microculture on Cell Metabolism and Biochemistry: Do Cells Get Stressed in Microchannels?

    No full text
    Microfluidics is emerging as a promising platform for cell culture, enabling increased microenvironment control and potential for integrated analysis compared to conventional macroculture systems such as well plates and Petri dishes. To advance the use of microfluidic devices for cell culture, it is necessary to better understand how miniaturization affects cell behavior. In particular, microfluidic devices have significantly higher surface-area-to-volume ratios than conventional platforms, resulting in lower volumes of media per cell, which can lead to cell stress. We investigated cell stress under a variety of culture conditions using three cell lines: parental HEK (human embryonic kidney) cells and transfected HEK cells that stably express wild-type (WT) and mutant (G601S) <i>human ether-a-go-go related gene</i> (hERG) potassium channel protein. These three cell lines provide a unique model system through which to study cell-type-specific responses in microculture because mutant hERG is known to be sensitive to environmental conditions, making its expression a particularly sensitive readout through which to compare macro- and microculture. While expression of WT-hERG was similar in microchannel and well culture, the expression of mutant G601S-hERG was reduced in microchannels. Expression of the endoplasmic reticulum (ER) stress marker immunoglobulin binding protein (BiP) was upregulated in all three cell lines in microculture. Using BiP expression, glucose consumption, and lactate accumulation as readouts we developed methods for reducing ER stress including properly increasing the frequency of media replacement, reducing cell seeding density, and adjusting the serum concentration and buffering capacity of culture medium. Indeed, increasing the buffering capacity of culture medium or frequency of media replacement partially restored the expression of the G601S-hERG in microculture. This work illuminates how biochemical properties of cells differ in macro- and microculture and suggests strategies that can be used to modify cell culture protocols for future studies involving miniaturized culture platforms

    How microscale approaches can be applied to model the complex host pathogen microenvironment.

    No full text
    <p>(A) Virulence strategies of pathogens meet defense strategies of the host at the epithelial barrier. The infectious milieu can be incredibly complex, with organisms from different kingdoms interacting both with each other and with the host. Ideally, an accurate representation of the host, including the epithelium, vascular compartment, interstitial compartment, stromal cells, resident immune cells, and cytokines, would be exposed to an accurate representation of the invading pathogens, including a mixture of bacteria, fungi, viruses, and all sorts of soluble factors. In vitro methods now focus on making this complex environment experimentally tractable, modeling 1 or 2 components of the milieu. (B) Four aspects of the infection microenvironment that can be readily modeled using microfluidic approaches. 1. Microscale techniques simplify the process of modeling the fluid flows and shear forces that occur along the apical surface of the epithelium. 2. Gradients are easy to generate precisely and reproducibly in microscale and are ideal for performing chemotaxis assays. 3. Device geometry is customizable at microscale and offers control over coculture environments, allowing for soluble factor communication between 2 or more populations, as well as coculture between microbes from different kingdoms. 4. Microscale approaches can be used to create organotypic models that recapitulate aspects of tissue structure and function, which may better represent the host in host–pathogen interaction studies. Future microscale approaches may target entirely different aspects of the complex infection microenvironment depicted in (A).</p
    corecore