2 research outputs found

    Synthesis of Silicon Carbide-Derived Carbon as an Electrode of a Microbial Fuel Cell and an Adsorbent of Aqueous Cr(VI)

    No full text
    Micron-sized nonporous silicon carbide (SiC) powder of the spent heating elements of a graphite furnace were used as the common precursor of two different forms of carbide-derived carbon (CDC) synthesized by chlorination at different temperatures: (1) graphitic and (2) amorphous Si-CDCs. Whereas the former material having high electroconductivity was used as an efficient electrode of a microbial fuel cell (MFC), the latter material having high specific surface area was used as an efficient adsorbent for aqueous hexavalent chromium (Cr­(VI)). The MFCs generated a significantly high maximum power density of ∼1570 ± 30 mW/m<sup>2</sup> and open circuit potential of ∼460 ± 5 mV. The adsorbents exhibited a significantly large adsorption capacity of ∼95 ± 5 mg/g. This study has developed for the first time two types of Si-CDCs having different physicochemical characteristics, from the common SiC precursor via the facile route of different temperature conditions, for bioelectricity generation and environmental remediation applications

    COVID-19 Host Genetics Initiative. A first update on mapping the human genetic architecture of COVID-19

    No full text
    The COVID-19 pandemic continues to pose a major public health threat, especially in countries with low vaccination rates. To better understand the biological underpinnings of SARS-CoV-2 infection and COVID-19 severity, we formed the COVID-19 Host Genetics Initiative1. Here we present a genome-wide association study meta-analysis of up to 125,584 cases and over 2.5 million control individuals across 60 studies from 25 countries, adding 11 genome-wide significant loci compared with those previously identified2. Genes at new loci, including SFTPD, MUC5B and ACE2, reveal compelling insights regarding disease susceptibility and severity.</p
    corecore