200 research outputs found

    Fragmentation dynamics of the ethyl bromide and ethyl iodide cations: a velocity-map imaging study

    Get PDF
    The photodissociation dynamics of ethyl bromide and ethyl iodide cations (C2H5Br+ and C2H5I+) have been studied. Ethyl halide cations were formed through vacuum ultraviolet (VUV) photoionization of the respective neutral parent molecules at 118.2 nm, and were photolysed at a number of ultraviolet (UV) photolysis wavelengths, including 355 nm and wavelengths in the range from 236 to 266 nm. Time-of-flight mass spectra and velocity-map images have been acquired for all fragment ions and for ground (Br) and spin–orbit excited (Br*) bromine atom products, allowing multiple fragmentation pathways to be investigated. The experimental studies are complemented by spin–orbit resolved ab initio calculations of cuts through the potential energy surfaces (along the RC–Br/I stretch coordinate) for the ground and first few excited states of the respective cations. Analysis of the velocity-map images indicates that photoexcited C2H5Br+ cations undergo prompt C–Br bond fission to form predominantly C2H5+ + Br* products with a near-limiting ‘parallel’ recoil velocity distribution. The observed C2H3+ + H2 + Br product channel is thought to arise via unimolecular decay of highly internally excited C2H5+ products formed following radiationless transfer from the initial excited state populated by photon absorption. Broadly similar behaviour is observed in the case of C2H5I+, along with an additional energetically accessible C–I bond fission channel to form C2H5 + I+ products. HX (X = Br, I) elimination from the highly internally excited C2H5X+ cation is deemed the most probable route to forming the C2H4+ fragment ions observed from both cations. Finally, both ethyl halide cations also show evidence of a minor C–C bond fission process to form CH2X+ + CH3 products

    Ultrafast photophysical studies of a multicomponent sunscreen : oxybenzone - titanium dioxide mixtures

    Get PDF
    Recent studies of the sunscreen constituent oxybenzone have suggested that the dominant mechanism underlying the efficient photoprotection it offers relies on an initial ultrafast enol -> keto tautomerisation, followed by nonadiabatic transfer to the ground electronic state. Subsequent collisions with the solvent bath then reform the original enol tautomer. Utilising femtosecond transient electronic absorption spectroscopy we explore the dissipation of electronic excitation energy in oxybenzone in the presence of titanium dioxide, a widely used, and complementary sunscreen component. We find the relaxation dynamics of this popular organic filter are unaltered by the presence of this favoured inorganic scatterer and the overall dynamics can be described by the additive contribution of the individual constituents. The combination of the two components provides broadband photoprotective properties justifying the widely used organic filter and inorganic scatterer mixtures in commercial sunscreen products

    Towards Understanding Photodegradation Pathways in Lignins:The Role of Intramolecular Hydrogen Bonding in Excited States

    Get PDF
    The photoinduced dynamics of the lignin building blocks syringol, guaiacol, and phenol were studied using time-resolved ion yield spectroscopy and velocity map ion imaging. Following irradiation of syringol and guaiacol with a broad-band femtosecond ultraviolet laser pulse, a coherent superposition of out-of-plane OH torsion and/or OMe torsion/flapping motions is created in the first excited 1ππ* (S1) state, resulting in a vibrational wavepacket, which is probed by virtue of a dramatic nonplanar → planar geometry change upon photoionization from S1 to the ground state of the cation (D0). Any similar quantum beat pattern is absent in phenol. In syringol, the nonplanar geometry in S1 is pronounced enough to reduce the degree of intramolecular H bonding (between OH and OMe groups), enabling H atom elimination from the OH group. For guaiacol, H bonding is preserved after excitation, despite the nonplanar geometry in S1, and prevents O–H bond fission. This behavior affects the propensities for forming undesired phenoxyl radical sites in these three lignin chromophores and provides important insight into their relative “photostabilities” within the larger biopolymer

    Tuning photochemistry:substituent effects on πσ* state mediated bond fission in thioanisoles

    Get PDF
    The electronic branching in the thiophenoxyl radicals formed by UV photolysis of thioanisole can be tuned by placing electron withdrawing/donating substituents at the 4-position.</p

    Photofragmentation dynamics of <i>N,N</i>-dimethylformamide following excitation at 193 nm

    Get PDF
    N,N-dimethylformamide, HCON(CH3)2, is a useful model compound for investigating peptide bond photofragmentation dynamics. We report data from a comprehensive experimental and theoretical study into the photofragmentation dynamics of N,N-dimethylformamide in the gas phase at 193 nm. Through a combination of velocity-map imaging and hydrogen atom Rydberg tagging photofragment translational spectroscopy, we have identified two primary fragmentation channels, namely fission of the NCO `peptide' bond, and NCH3 bond fission leading to loss of CH3. The possible fragmentation channels leading to the observed products are rationalised with recourse to CASPT2 calculations of the ground and first few excited-state potential energy curves along the relevant dissociation coordinates, and the results are compared with data from previous experimental and theoretical studies on the same system
    corecore