35 research outputs found

    Thermostabilization of adenovirus-vectored vaccines, removing the need for continual cold-chain storage

    Get PDF
    Challenges around affordable and reliable supply of vaccines that need to be transported and maintained in the cold-chain to remain effective are a hindrance to realizing their full potential. We will describe preparation for GMP manufacture and Phase I clinical trial of a new technology for vaccine thermostabilisation. We will also describe application of the same technology to a novel veterinary vaccine which is entering advanced development. The sugar-matrix thermostabilisation (SMT) technology involves application of vaccine in a simple disaccharide-based buffer to a non-woven matrix, similar to a pad of filter paper. This is followed by drying at ambient temperature and pressure (i.e. without a freezing step, enhancing suitability for freeze-sensitive products). The materials and process are simple and cheap. We have previously shown that SMT allows for the storage of viral vectored vaccines such as modified vaccinia virus Ankara (MVA) and adenovirus vectors at up to 45oC for several months with minimal losses1,2. More recently we have shown the technique can improve stability of various other vaccine types, ranging from virus-like particles through to enveloped RNA viruses. In many cases, the level of thermostability achieved would allow for “last mile” vaccine distribution via the ‘extended controlled temperature chain’ (ECTC), or even allow prolonged storage at uncontrolled ambient temperature. This would decrease distribution-associated costs/ losses and increase vaccination feasibility in hard-to-reach areas. We have now received funding for GMP manufacture and Phase I clinical trial of an SMT-formulated adenovirus-vectored rabies vaccine, ChAdOx2 RabG. We will describe the production of custom wet-laid non-woven matrices with optimized SMT performance, using processes and materials suitable for use as an input to a GMP process. We will further describe the development of simple apparatus suitable for executing the process for pilot GMP batches, the optimization of the drying process and excipient composition, and the application of frequency modulation spectroscopy for non-destructive analysis of residual moisture content. Finally, we will describe the application of the technology to a formulation of ChAdOx1 RVF, an adenovirus-vectored vaccine against Rift Valley Fever Virus which is being developed for both human and veterinary use. In this case, SMT is applied to an ultra-low-cost drug substance designed for veterinary use (cell lysate which has been clarified and ultrafiltered but not chromatographically purified), emphasizing the suitability of the approach for low-cost and One Health applications. 1. Alcock, R., et al., Long-Term Thermostabilization of Live Poxviral and Adenoviral Vaccine Vectors at Supraphysiological Temperatures in Carbohydrate Glass. Science Translational Medicine, 2010. 2(19):19ra12. 2. Dulal, P., et al., Potency of a thermostabilised chimpanzee adenovirus Rift Valley Fever vaccine in cattle. Vaccine, 2016. 34(20): p. 2296-8

    Identification and immune assessment of T cell epitopes in five Plasmodium falciparum blood stage antigens to facilitate vaccine candidate selection and optimization

    Get PDF
    The hurdles to effective blood stage malaria vaccine design include immune evasion tactics used by the parasite such as redundant invasion pathways and antigen variation among circulating parasite strains. While blood stage malaria vaccine development primarily focuses on eliciting optimal humoral responses capable of blocking erythrocyte invasion, clinically-tested Plasmodium falciparum (Pf) vaccines have not elicited sterile protection, in part due to the dramatically high levels of antibody needed. Recent development efforts with non-redundant, conserved blood stage antigens suggest both high antibody titer and rapid antibody binding kinetics are important efficacy factors. Based on the central role of helper CD4 T cells in development of strong, protective immune responses, we systematically analyzed the class II epitope content in five leading Pf blood stage antigens (RH5, CyRPA, RIPR, AMA1 and EBA175) using in silico, in vitro, and ex vivo methodologies. We employed in silico T cell epitope analysis to enable identification of 67 HLA-restricted class II epitope clusters predicted to bind a panel of nine HLA-DRB1 alleles. We assessed a subset of these for HLA-DRB1 allele binding in vitro, to verify the in silico predictions. All clusters assessed (40 clusters represented by 46 peptides) bound at least two HLA-DR alleles in vitro. The overall epitope prediction to in vitro HLA-DRB1 allele binding accuracy was 71%. Utilizing the set of RH5 class II epitope clusters (10 clusters represented by 12 peptides), we assessed stimulation of T cells collected from HLA-matched RH5 vaccinees using an IFN-γ T cell recall assay. All clusters demonstrated positive recall responses, with the highest responses – by percentage of responders and response magnitude – associated with clusters located in the N-terminal region of RH5. Finally, a statistically significant correlation between in silico epitope predictions and ex vivo IFN-γ recall response was found when accounting for HLA-DR matches between the epitope predictions and donor HLA phenotypes. This is the first comprehensive analysis of class II epitope content in RH5, CyRPA, RIPR, AMA1 and EBA175 accompanied by in vitro HLA binding validation for all five proteins and ex vivo T cell response confirmation for RH5

    An Insurance Value Modeling Approach That Captures the Wider Value of a Novel Antimicrobial to Health Systems, Patients, and the Population

    Get PDF
    **Background:** Traditional health economic evaluations of antimicrobials currently underestimate their value to wider society. They can be supplemented by additional value elements including insurance value, which captures the value of an antimicrobial in preventing or mitigating impacts of adverse risk events. Despite being commonplace in other sectors, constituents of the impacts and approaches for estimating insurance value have not been investigated. **Objectives:** This study assessed the insurance value of a novel gram-negative antimicrobial from operational healthcare, wider population health, productivity, and informal care perspectives. **Methods:** A novel mixed-methods approach was used to model insurance value in the United Kingdom: (1) literature review and multidisciplinary expert workshops to identify risk events for 4 relevant scenarios: ward closures, unavoidable shortage of conventional antimicrobials, viral respiratory pandemics, and catastrophic antimicrobial resistance (AMR); (2) parameterizing mitigable costs and frequencies of risk events across perspectives and scenarios; (3) estimating insurance value through a Monte Carlo simulation model for extreme events and a dynamic disease transmission model. **Results:** The mean insurance value across all scenarios and perspectives over 10 years in the UK was ÂŁ718 million, should AMR remain unchanged, where only ÂŁ134 million related to operational healthcare costs. It would be 50%-70% higher if AMR steadily increased or if a more risk-averse view (1-in-10 year downside) of future events is taken. **Discussion:** The overall insurance value if AMR remains at current levels (a conservative projection), is over 5 times greater than insurance value from just the operational healthcare costs perspective, traditionally the sole perspective used in health budgeting. Insurance value was generally larger for nationwide or universal (catastrophic AMR, pandemic, and conventional antimicrobial shortages) rather than localized (ward closure) scenarios, across perspectives. Components of this insurance value match previously published estimates of operational costs and mortality impacts. **Conclusions:** Insurance value of novel antimicrobials can be systematically modeled and substantially augments their traditional health economic value in normal circumstances. These approaches are generalizable to similar health interventions and form a framework for health systems and governments to capture broader value in health technology assessments, improve healthcare access, and increase resilience by planning for adverse scenarios

    Perceived threat of COVID-19, attitudes towards vaccination, and vaccine hesitancy: A prospective longitudinal study in the UK

    Get PDF
    Objectives Using the Health Belief Model as a conceptual framework, we investigated the association between attitudes towards COVID-19, COVID-19 vaccinations, and vaccine hesitancy and change in these variables over a 9-month period in a UK cohort. Methods The COPE study cohort (n = 11,113) was recruited via an online survey at enrolment in March/April 2020. The study was advertised via the HealthWise Wales research registry and social media. Follow-up data were available for 6942 people at 3 months (June/July 2020) and 5037 at 12 months (March/April 2021) post-enrolment. Measures included demographics, perceived threat of COVID-19, perceived control, intention to accept or decline a COVID-19 vaccination, and attitudes towards vaccination. Logistic regression models were fitted cross-sectionally at 3 and 12 months to assess the association between motivational factors and vaccine hesitancy. Longitudinal changes in motivational variables for vaccine-hesitant and non-hesitant groups were examined using mixed-effect analysis of variance models. Results Fear of COVID-19, perceived susceptibility to COVID-19, and perceived personal control over COVID-19 infection transmission decreased between the 3- and 12-month surveys. Vaccine hesitancy at 12 months was independently associated with low fear of the disease and more negative attitudes towards COVID-19 vaccination. Specific barriers to COVID-19 vaccine uptake included concerns about safety and efficacy in light of its rapid development, mistrust of government and pharmaceutical companies, dislike of coercive policies, and perceived lack of relaxation in COVID-19-related restrictions as the vaccination programme progressed. Conclusions Decreasing fear of COVID-19, perceived susceptibility to the disease, and perceptions of personal control over reducing infection-transmission may impact future COVID-19 vaccination uptake

    Preclinical development of a stabilized RH5 virus-like particle vaccine that induces improved antimalarial antibodies

    Get PDF
    Plasmodium falciparum reticulocyte-binding protein homolog 5 (RH5) is a leading blood-stage malaria vaccine antigen target, currently in a phase 2b clinical trial as a full-length soluble protein/adjuvant vaccine candidate called RH5.1/Matrix-M. We identify that disordered regions of the full-length RH5 molecule induce non-growth inhibitory antibodies in human vaccinees and that a re-engineered and stabilized immunogen (including just the alpha-helical core of RH5) induces a qualitatively superior growth inhibitory antibody response in rats vaccinated with this protein formulated in Matrix-M adjuvant. In parallel, bioconjugation of this immunogen, termed "RH5.2," to hepatitis B surface antigen virus-like particles (VLPs) using the "plug-and-display" SpyTag-SpyCatcher platform technology also enables superior quantitative antibody immunogenicity over soluble protein/adjuvant in vaccinated mice and rats. These studies identify a blood-stage malaria vaccine candidate that may improve upon the current leading soluble protein vaccine candidate RH5.1/Matrix-M. The RH5.2-VLP/Matrix-M vaccine candidate is now under evaluation in phase 1a/b clinical trials

    Human vaccination against RH5 induces neutralizing antimalarial antibodies that inhibit RH5 invasion complex interactions.

    Get PDF
    The development of a highly effective vaccine remains a key strategic goal to aid the control and eventual eradication of Plasmodium falciparum malaria. In recent years, the reticulocyte-binding protein homolog 5 (RH5) has emerged as the most promising blood-stage P. falciparum candidate antigen to date, capable of conferring protection against stringent challenge in Aotus monkeys. We report on the first clinical trial to our knowledge to assess the RH5 antigen - a dose-escalation phase Ia study in 24 healthy, malaria-naive adult volunteers. We utilized established viral vectors, the replication-deficient chimpanzee adenovirus serotype 63 (ChAd63), and the attenuated orthopoxvirus modified vaccinia virus Ankara (MVA), encoding RH5 from the 3D7 clone of P. falciparum. Vaccines were administered i.m. in a heterologous prime-boost regimen using an 8-week interval and were well tolerated. Vaccine-induced anti-RH5 serum antibodies exhibited cross-strain functional growth inhibition activity (GIA) in vitro, targeted linear and conformational epitopes within RH5, and inhibited key interactions within the RH5 invasion complex. This is the first time to our knowledge that substantial RH5-specific responses have been induced by immunization in humans, with levels greatly exceeding the serum antibody responses observed in African adults following years of natural malaria exposure. These data support the progression of RH5-based vaccines to human efficacy testing

    Weight loss in individuals with metabolic syndrome given DASH diet counseling when provided a low sodium vegetable juice: a randomized controlled trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Metabolic syndrome, a constellation of metabolic risk factors for type 2 diabetes and cardiovascular disease, is one of the fastest growing disease entities in the world. Weight loss is thought to be a key to improving all aspects of metabolic syndrome. Research studies have suggested benefits from diets rich in vegetables and fruits in helping individuals reach and achieve healthy weights.</p> <p>Objective</p> <p>To evaluate the effects of a ready to serve vegetable juice as part of a calorie-appropriate Dietary Approaches to Stop Hypertension (DASH) diet in an ethnically diverse population of people with Metabolic Syndrome on weight loss and their ability to meet vegetable intake recommendations, and on their clinical characteristics of metabolic syndrome (waist circumference, triglycerides, HDL, fasting blood glucose and blood pressure).</p> <p>A secondary goal was to examine the impact of the vegetable juice on associated parameters, including leptin, vascular adhesion markers, and markers of the oxidative defense system and of oxidative stress.</p> <p>Methods</p> <p>A prospective 12 week, 3 group (0, 8, or 16 fluid ounces of low sodium vegetable juice) parallel arm randomized controlled trial. Participants were requested to limit their calorie intake to 1600 kcals for women and 1800 kcals for men and were educated on the DASH diet. A total of 81 (22 men & 59 women) participants with Metabolic Syndrome were enrolled into the study. Dietary nutrient and vegetable intake, weight, height, leptin, metabolic syndrome clinical characteristics and related markers of endothelial and cardiovascular health were measured at baseline, 6-, and 12-weeks.</p> <p>Results</p> <p>There were significant group by time interactions when aggregating both groups consuming vegetable juice (8 or 16 fluid ounces daily). Those consuming juice lost more weight, consumed more Vitamin C, potassium, and dietary vegetables than individuals who were in the group that only received diet counseling (p < 0.05).</p> <p>Conclusion</p> <p>The incorporation of vegetable juice into the daily diet can be a simple and effective way to increase the number of daily vegetable servings. Data from this study also suggest the potential of using a low sodium vegetable juice in conjunction with a calorie restricted diet to aid in weight loss in overweight individuals with metabolic syndrome.</p

    Cohort profile: The UK COVID-19 Public Experiences (COPE) prospective longitudinal mixed-methods study of health and well-being during the SARSCoV2 coronavirus pandemic

    Get PDF
    Public perceptions of pandemic viral threats and government policies can influence adherence to containment, delay, and mitigation policies such as physical distancing, hygienic practices, use of physical barriers, uptake of testing, contact tracing, and vaccination programs. The UK COVID-19 Public Experiences (COPE) study aims to identify determinants of health behaviour using the Capability, Opportunity, Motivation (COM-B) model using a longitudinal mixed-methods approach. Here, we provide a detailed description of the demographic and self-reported health characteristics of the COPE cohort at baseline assessment, an overview of data collected, and plans for follow-up of the cohort. The COPE baseline survey was completed by 11,113 UK adult residents (18+ years of age). Baseline data collection started on the 13th of March 2020 (10-days before the introduction of the first national COVID-19 lockdown in the UK) and finished on the 13th of April 2020. Participants were recruited via the HealthWise Wales (HWW) research registry and through social media snowballing and advertising (FacebookÂŽ, TwitterÂŽ, InstagramÂŽ). Participants were predominantly female (69%), over 50 years of age (68%), identified as white (98%), and were living with their partner (68%). A large proportion (67%) had a college/university level education, and half reported a pre-existing health condition (50%). Initial follow-up plans for the cohort included in-depth surveys at 3-months and 12-months after the first UK national lockdown to assess short and medium-term effects of the pandemic on health behaviour and subjective health and well-being. Additional consent will be sought from participants at follow-up for data linkage and surveys at 18 and 24-months after the initial UK national lockdown. A large non-random sample was recruited to the COPE cohort during the early stages of the COVID-19 pandemic, which will enable longitudinal analysis of the determinants of health behaviour and changes in subjective health and well-being over the course of the pandemic
    corecore