12 research outputs found

    Removal of Arsenic (III) from groundwater applying a reusable Mg-Fe-Cl layered double hydroxide

    Get PDF
    BACKGROUND: Layered double hydroxide compounds (LDHs) have been applied for the removal of oxyanions including arsenate (As(V)). However, the aim of this present research is to develop a LDH to treat arsenite (As(III)). Both batch and column sorption studies were conducted to assess the effect of LDH dosage, contact time, solution pH and initial As(III) concentrations on the As(III) removal performance. The potential re-use of this sorbent was also investigated.<p></p> RESULTS: For 2 g L−1 of Mg-Fe-Cl LDH, As(III) in test solution can be reduced from 400 µg L−1 to <10 µg L−1 after a contact time of 2 h. High As(III) concentration in Bangladesh groundwater can be reduced to meet the national drinking water standards (<50 µg L−1). The maximum adsorption capacity of As(III) by Mg-Fe-Cl LDH is 14.6 mg g−1-LDH. Further, reusability of this sorbent was at least 20 cycles of regeneration with effective As(III) removal between 93.0 and 98.5%. Moreover, As(III) removal was unaffected by the solution pH but affected by the co-existing competing anions and concentration of As(III). Finally, the main mechanism of As(III) removal by Mg-Fe-Cl LDH was suggested to be chemical sorption together with anion and ligand exchange with interlayer Cl− and OH− ions.<p></p> CONCLUSION: High efficiency of sorption of As(III) by the developed Mg-Fe-Cl LDH was demonstrated in this study which is generally not the case for most other sorbent materials. Pilot-scale trials are needed to explore the suitability of full application of the developed Mg-Fe-Cl LDH for the removal of As(III).<p></p&gt

    Grassland Phosphorus and Nitrogen Fertiliser Replacement value of Dairy Processing Dewatered Sludge

    Get PDF
    peer reviewdDairy processing sludge is currently a bio-based fertiliser being spread to grassland without knowledge pertaining to its phosphorus (P) or nitrogen (N) fertiliser replacement value. This creates uncertainty of desired crop yield achievement and unproductive nutrient recycling and also poses a great challenge to the dairy milk processing industry in promoting their food processing by-product as valuable recyclable fertiliser. Therefore four representative samples, i.e. two activated sludge (aluminium-precipitated (Al-sludge) and iron-precipitated (Fe-sludge)), and two lime-stabilised calcium-precipitated sludge (Ca1- and Ca2-sludge), were examined at field scale to assess P and N availability for crop yield and uptake in comparison to reference mineral fertilisers over one seasonal year. The field plots were set-up on a light textured clay loam soil within the optimum plant available P (Morgan's soil P index 3, i.e. medium / adequate soil P level) in two separate adjoining areas consisting of P and N availability experiments. Each experiment consisted of 40 plots (each 8×2 m2) of 10 treatments with 4 replications arranged in a randomised complete block design. All dairy sludge (40 kg-P ha−1) and mineral P treatments (rates 0–50 kg-P ha−1) produced similar yields and uptake, and crop P was not affected by sludge applications despite the presence of high Al, Ca and Fe. During the experiment there was no significant change in P index (stayed at index 3) indicating that no treatment caused a decline in P into index 2 (i.e. low soil P level), therefore replacing P removed by the crop. The only change in Morgan's P was observed in the Ca-sludge treatments, but this was due to Morgan's reagent overestimating plant available P in high Ca conditions. From N trial plots a significantly higher grass yield and N uptake was observed for Fe and both Ca-type sludge applied plots than the control (zero N) plot during the 1st harvest, while no statistical difference observed in the subsequent harvests (up to 4th harvesting). The N fertiliser replacement value (derived from mineral N response) of sludge samples was observed to be in the order of Fe (54%)>Ca2 (25%)>Ca1 (22%)>Al (8%) with greater promise of N fertiliser efficiency of Fe and Ca types. Overall these bio-based sludges show promise in recycling P and N for grassland application but longer term trials in other soil types considering other environmental aspects (losses to soil, water and air) can further optimize the management of dairy sludge as an alternative to chemical fertiliser

    An examination of maximum legal application rates of dairy processing and associated STRUBIAS fertilising products in agriculture

    Get PDF
    peer-reviewedThe dairy industry produces vast quantities of dairy processing sludge (DPS), which can be processed further to develop second generation products such as struvite, biochars and ashes (collectively known as STRUBIAS). These bio-based fertilizers have heterogeneous nutrient and metal contents, resulting in a range of possible application rates. To avoid nutrient losses to water or bioaccumulation of metals in soil or crops, it is important that rates applied to land are safe and adhere to the maximum legal application rates similar to inorganic fertilizers. This study collected and analysed nutrient and metal content of all major DPS (n = 84) and DPS-derived STRUBIAS products (n = 10), and created an application calculator in MS Excel™ to provide guidance on maximum legal application rates for ryegrass and spring wheat across plant available phosphorus (P) deficient soil to P-excess soil. The sample analysis showed that raw DPS and DPS-derived STRUBIAS have high P contents ranging from 10.1 to 122 g kg− 1. Nitrogen (N) in DPS was high, whereas N concentration decreased in thermo-chemical STRUBIAS products (chars and ash) due to the high temperatures used in their formation. The heavy metal content of DPS and DPS-derived STRUBIAS was significantly lower than the EU imposed limits. Using the calculator, application rates of DPS and DPS-derived STRUBIAS materials (dry weight) ranged from 0 to 4.0 tonnes ha− 1 y− 1 for ryegrass and 0–4.5 tonnes ha− 1 y− 1 for spring wheat. The estimated heavy metal ingestion to soil annually by the application of the DPS and DPS-derived STRUBIAS products was lower than the EU guideline on soil metal accumulation. The calculator is adaptable for any bio-based fertilizer, soil and crop type, and future work should continue to characterise and incorporate new DPS and DPS-derived STRUBIAS products into the database presented in this paper. In addition, safe application rates pertaining to other regulated pollutants or emerging contaminants that may be identified in these products should be included. The fertilizer replacement value of these products, taken from long-term field studies, should be factored into application rates

    Landspreading with co-digested cattle slurry, with or without pasteurisation, as a mitigation strategy against pathogen, nutrient and metal contamination associated with untreated slurry

    Get PDF
    peer-reviewedNorth Atlantic European grassland systems have a low nutrient use efficiency and high rainfall. This grassland is typically amended with unprocessed slurry, which counteracts soil organic matter depletion and provides essential plant micronutrients but can be mobilised during rainfall events thereby contributing to pathogen, nutrient and metal incidental losses. Co-digesting slurry with waste from food processing mitigates agriculture-associated environmental impacts but may alter microbial, nutrient and metal profiles and their transmission to watercourses, and/or soil persistence, grass yield and uptake. The impact of EU and alternative pasteurisation regimes on transmission potential of these various pollutants is not clearly understood, particularly in pasture-based agricultural systems. This study utilized simulated rainfall (Amsterdam drip-type) at a high intensity indicative of a worst-case scenario of ~11 mm hr−1 applied to plots 1, 2, 15 and 30 days after grassland application of slurry, unpasteurised digestate, pasteurised digestate (two conditions) and untreated controls. Runoff and soil samples were collected and analysed for a suite of potential pollutants including bacteria, nutrients and metals following rainfall simulation. Grass samples were collected for three months following application to assess yield as well as nutrient and metal uptake. For each environmental parameter tested: microbial, nutrient and metal runoff losses; accumulation in soil and uptake in grass, digestate from anaerobic co-digestion of slurry with food processing waste resulted in lower pollution potential than traditional landspreading of slurry without treatment. Reduced microbial runoff from digestate was the most prominent advantage of digestate application. Pasteurisation of the digestate further augmented those environmental benefits, without impacting grass output. Anaerobic co-digestion of slurry is therefore a multi-beneficial circular approach to reducing impacts of livestock production on the environment.Department of Agriculture, Food and the Marine, Irelan
    corecore