2,773 research outputs found
Long-lived Bloch oscillations with bosonic Sr atoms and application to gravity measurement at micrometer scale
We report on the observation of Bloch oscillations on the unprecedented time
scale of severalseconds. The experiment is carried out with ultra-cold bosonic
strontium-88 loaded into a vertical optical standing wave. The negligible
atom-atom elastic cross section and the absence of spin makes Sr an
almost ideal Bose gas insensitive to typical mechanisms of decoherence due to
thermalization and to external stray fields. The small size enables precision
measurements of forces at micrometer scale. This is a challenge in physics for
studies of surfaces, Casimir effects, and searches for deviations from
Newtonian gravity predicted by theories beyond the standard model
Universal temperature dependence of the magnetization of gapped spin chains
Temperature dependence of the magnetization of the Haldane spin chain at
finite magnetic field is analyzed systematically. Quantum Monte Carlo data
indicates a clear minimum of magnetization as a function of temperature in the
gapless regime. On the basis of the Tomonaga-Luttinger liquid theory, we argue
that this minimum is rather universal and can be observed for general axially
symmetric quasi-one-dimensional spin systems. Our argument is confirmed by the
magnetic-field dependence of the spin-wave velocity obtained numerically. One
can estimate a magnitude of the gap of any such systems by fitting the
experimental data with the magnetization minimum.Comment: 9 pages, 7 figure
Static and dynamic properties of crystalline phases of two-dimensional electrons in a strong magnetic field
We study the cohesive energy and elastic properties as well as normal modes
of the Wigner and bubble crystals of the two-dimensional electron system (2DES)
in higher Landau levels. Using a simple Hartree-Fock approach, we show that the
shear moduli ('s) of these electronic crystals show a non-monotonic
behavior as a function of the partial filling factor at any given
Landau level, with increasing for small values of , before
reaching a maximum at some intermediate filling factor , and
monotonically decreasing for . We also go beyond previous
treatments, and study how the phase diagram and elastic properties of electron
solids are changed by the effects of screening by electrons in lower Landau
levels, and by a finite thickness of the experimental sample. The implications
of these results on microwave resonance experiments are briefly discussed.Comment: Discussion updated - 16 pages, 10 figures; version accepted for
publication in Phys. Rev.
Quantum-mechanical wavepacket transport in quantum cascade laser structures
We present a viewpoint of the transport process in quantum cascade laser
structures in which spatial transport of charge through the structure is a
property of coherent quantum-mechanical wavefunctions. In contrast, scattering
processes redistribute particles in energy and momentum but do not directly
cause spatial motion of charge.Comment: 6 pages, 5 figures included in tex, to appear in Physical Review
Is Small Perfect? Size Limit to Defect Formation in Pyramidal Pt Nanocontacts
We report high resolution transmission electron microscopy and ab initio
calculation results for the defect formation in Pt nanocontacts (NCs). Our
results show that there is a size limit to the existence of twins (extended
structural defects). Defects are always present but blocked away from the tip
axes. The twins may act as scattering plane, influencing contact electron
transmission for Pt NC at room temperature and Ag/Au NC at low temperature.Comment: 4 pages, 3 figure
Semiclassical Dynamics of Electrons in Magnetic Bloch Bands: a Hamiltonian Approach
y formally diagonalizing with accuracy the Hamiltonian of electrons
in a crystal subject to electromagnetic perturbations, we resolve the debate on
the Hamiltonian nature of semiclassical equations of motion with Berry-phase
corrections, and therefore confirm the validity of the Liouville theorem. We
show that both the position and momentum operators acquire a Berry-phase
dependence, leading to a non-canonical Hamiltonian dynamics. The equations of
motion turn out to be identical to the ones previously derived in the context
of electron wave-packets dynamics.Comment: 4 page
Self consistent theory of unipolar charge-carrier injection in metal/insulator/metal systems
A consistent device model to describe current-voltage characteristics of
metal/insulator/metal systems is developed. In this model the insulator and the
metal electrodes are described within the same theoretical framework by using
density of states distributions. This approach leads to differential equations
for the electric field which have to be solved in a self consistent manner by
considering the continuity of the electric displacement and the electrochemical
potential in the complete system. The model is capable of describing the
current-voltage characteristics of the metal/insulator/metal system in forward
and reverse bias for arbitrary values of the metal/ insulator injection
barriers. In the case of high injection barriers, approximations are provided
offering a tool for comparison with experiments. Numerical calculations are
performed exemplary using a simplified model of an organic semiconductor.Comment: 21 pages, 8 figure
Simultaneous current-, force- and work function measurement with atomic resolution
The local work function of a surface determines the spatial decay of the
charge density at the Fermi level normal to the surface. Here, we present a
method that enables simultaneous measurements of local work function and
tip-sample forces. A combined dynamic scanning tunneling microscope and atomic
force microscope is used to measure the tunneling current between an
oscillating tip and the sample in real time as a function of the cantilever's
deflection. Atomically resolved work function measurements on a silicon
(111)-() surface are presented and related to concurrently recorded
tunneling current- and force- measurements.Comment: 8 pages, 4 figures, submitted to Applied Physics Letter
Apparent Violation of the Wiedemann-Franz law near a magnetic field tuned metal-antiferromagnetic quantum critical point
The temperature dependence of the interlayer electrical and thermal
resistivity in a layered metal are calculated for Fermi liquid quasiparticles
which are scattered inelastically by two-dimensional antiferromagnetic spin
fluctuations. Both resistivities have a linear temperature dependence over a
broad temperature range. Extrapolations to zero temperature made from this
linear- range give values that appear to violate the Wiedemann-Franz law.
However, below a low-temperature scale, which becomes small close to the
critical point, a recovery of this law occurs. Our results describe recent
measurements on CeCoIn near a magnetic field-induced quantum phase
transition. Hence, the experiments do not necessarily imply a non-Fermi liquid
ground state.Comment: 4 pages, 2 figures; accepted to Phys. Rev. Let
- …