2,763 research outputs found

    Long-lived Bloch oscillations with bosonic Sr atoms and application to gravity measurement at micrometer scale

    Get PDF
    We report on the observation of Bloch oscillations on the unprecedented time scale of severalseconds. The experiment is carried out with ultra-cold bosonic strontium-88 loaded into a vertical optical standing wave. The negligible atom-atom elastic cross section and the absence of spin makes 88^{88}Sr an almost ideal Bose gas insensitive to typical mechanisms of decoherence due to thermalization and to external stray fields. The small size enables precision measurements of forces at micrometer scale. This is a challenge in physics for studies of surfaces, Casimir effects, and searches for deviations from Newtonian gravity predicted by theories beyond the standard model

    Universal temperature dependence of the magnetization of gapped spin chains

    Full text link
    Temperature dependence of the magnetization of the Haldane spin chain at finite magnetic field is analyzed systematically. Quantum Monte Carlo data indicates a clear minimum of magnetization as a function of temperature in the gapless regime. On the basis of the Tomonaga-Luttinger liquid theory, we argue that this minimum is rather universal and can be observed for general axially symmetric quasi-one-dimensional spin systems. Our argument is confirmed by the magnetic-field dependence of the spin-wave velocity obtained numerically. One can estimate a magnitude of the gap of any such systems by fitting the experimental data with the magnetization minimum.Comment: 9 pages, 7 figure

    Static and dynamic properties of crystalline phases of two-dimensional electrons in a strong magnetic field

    Full text link
    We study the cohesive energy and elastic properties as well as normal modes of the Wigner and bubble crystals of the two-dimensional electron system (2DES) in higher Landau levels. Using a simple Hartree-Fock approach, we show that the shear moduli (c66c_{66}'s) of these electronic crystals show a non-monotonic behavior as a function of the partial filling factor ν\nu^* at any given Landau level, with c66c_{66} increasing for small values of ν\nu^*, before reaching a maximum at some intermediate filling factor νm\nu^*_m, and monotonically decreasing for ν>νm\nu^*>\nu^*_m. We also go beyond previous treatments, and study how the phase diagram and elastic properties of electron solids are changed by the effects of screening by electrons in lower Landau levels, and by a finite thickness of the experimental sample. The implications of these results on microwave resonance experiments are briefly discussed.Comment: Discussion updated - 16 pages, 10 figures; version accepted for publication in Phys. Rev.

    Quantum-mechanical wavepacket transport in quantum cascade laser structures

    Full text link
    We present a viewpoint of the transport process in quantum cascade laser structures in which spatial transport of charge through the structure is a property of coherent quantum-mechanical wavefunctions. In contrast, scattering processes redistribute particles in energy and momentum but do not directly cause spatial motion of charge.Comment: 6 pages, 5 figures included in tex, to appear in Physical Review

    Is Small Perfect? Size Limit to Defect Formation in Pyramidal Pt Nanocontacts

    Get PDF
    We report high resolution transmission electron microscopy and ab initio calculation results for the defect formation in Pt nanocontacts (NCs). Our results show that there is a size limit to the existence of twins (extended structural defects). Defects are always present but blocked away from the tip axes. The twins may act as scattering plane, influencing contact electron transmission for Pt NC at room temperature and Ag/Au NC at low temperature.Comment: 4 pages, 3 figure

    Semiclassical Dynamics of Electrons in Magnetic Bloch Bands: a Hamiltonian Approach

    Full text link
    y formally diagonalizing with accuracy \hbar the Hamiltonian of electrons in a crystal subject to electromagnetic perturbations, we resolve the debate on the Hamiltonian nature of semiclassical equations of motion with Berry-phase corrections, and therefore confirm the validity of the Liouville theorem. We show that both the position and momentum operators acquire a Berry-phase dependence, leading to a non-canonical Hamiltonian dynamics. The equations of motion turn out to be identical to the ones previously derived in the context of electron wave-packets dynamics.Comment: 4 page

    Self consistent theory of unipolar charge-carrier injection in metal/insulator/metal systems

    Full text link
    A consistent device model to describe current-voltage characteristics of metal/insulator/metal systems is developed. In this model the insulator and the metal electrodes are described within the same theoretical framework by using density of states distributions. This approach leads to differential equations for the electric field which have to be solved in a self consistent manner by considering the continuity of the electric displacement and the electrochemical potential in the complete system. The model is capable of describing the current-voltage characteristics of the metal/insulator/metal system in forward and reverse bias for arbitrary values of the metal/ insulator injection barriers. In the case of high injection barriers, approximations are provided offering a tool for comparison with experiments. Numerical calculations are performed exemplary using a simplified model of an organic semiconductor.Comment: 21 pages, 8 figure

    Apparent Violation of the Wiedemann-Franz law near a magnetic field tuned metal-antiferromagnetic quantum critical point

    Get PDF
    The temperature dependence of the interlayer electrical and thermal resistivity in a layered metal are calculated for Fermi liquid quasiparticles which are scattered inelastically by two-dimensional antiferromagnetic spin fluctuations. Both resistivities have a linear temperature dependence over a broad temperature range. Extrapolations to zero temperature made from this linear-TT range give values that appear to violate the Wiedemann-Franz law. However, below a low-temperature scale, which becomes small close to the critical point, a recovery of this law occurs. Our results describe recent measurements on CeCoIn5_5 near a magnetic field-induced quantum phase transition. Hence, the experiments do not necessarily imply a non-Fermi liquid ground state.Comment: 4 pages, 2 figures; accepted to Phys. Rev. Let

    Simultaneous current-, force- and work function measurement with atomic resolution

    Get PDF
    The local work function of a surface determines the spatial decay of the charge density at the Fermi level normal to the surface. Here, we present a method that enables simultaneous measurements of local work function and tip-sample forces. A combined dynamic scanning tunneling microscope and atomic force microscope is used to measure the tunneling current between an oscillating tip and the sample in real time as a function of the cantilever's deflection. Atomically resolved work function measurements on a silicon (111)-(7×77\times 7) surface are presented and related to concurrently recorded tunneling current- and force- measurements.Comment: 8 pages, 4 figures, submitted to Applied Physics Letter

    Bloch oscillations in an aperiodic one-dimensional potential

    Get PDF
    We study the dynamics of an electron subjected to a static uniform electric field within a one-dimensional tight-binding model with a slowly varying aperiodic potential. The unbiased model is known to support phases of localized and extended one-electron states separated by two mobility edges. We show that the electric field promotes sustained Bloch oscillations of an initial Gaussian wave packet whose amplitude reflects the band width of extended states. The frequency of these oscillations exhibit unique features, such as a sensitivity to the initial wave packet position and a multimode structure for weak fields, originating from the characteristics of the underlying aperiodic potential.Comment: 6 pages, 7 figure
    corecore