145 research outputs found

    Mutations at the same residue (R50) of Kir6.2 (KCNJ11) that cause neonatal diabetes produce different functional effects

    Get PDF
    Heterozygous mutations in the human Kir6.2 gene (KCNJ11), the pore-forming subunit of the ATP-sensitive K(+) channel (K(ATP) channel), are a common cause of neonatal diabetes. We identified a novel KCNJ11 mutation, R50Q, that causes permanent neonatal diabetes (PNDM) without neurological problems. We investigated the functional effects this mutation and another at the same residue (R50P) that led to PNDM in association with developmental delay. Wild-type or mutant Kir6.2/SUR1 channels were examined by heterologous expression in Xenopus oocytes. Both mutations increased resting whole-cell currents through homomeric and heterozygous K(ATP) channels by reducing channel inhibition by ATP, an effect that was larger in the presence of Mg(2+). However the magnitude of the reduction in ATP sensitivity (and the increase in the whole-cell current) was substantially larger for the R50P mutation. This is consistent with the more severe phenotype. Single-R50P channel kinetics (in the absence of ATP) did not differ from wild type, indicating that the mutation primarily affects ATP binding and/or transduction. This supports the idea that R50 lies in the ATP-binding site of Kir6.2. The sulfonylurea tolbutamide blocked heterozygous R50Q (89%) and R50P (84%) channels only slightly less than wild-type channels (98%), suggesting that sulfonylurea therapy may be of benefit for patients with either mutation

    Reversible changes in pancreatic islet structure and function produced by elevated blood glucose

    Get PDF
    Diabetes is characterized by hyperglycaemia due to impaired insulin secretion and aberrant glucagon secretion resulting from changes in pancreatic islet cell function and/or mass. The extent to which hyperglycaemia per se underlies these alterations remains poorly understood. Here we show that β-cell-specific expression of a human activating KATP channel mutation in adult mice leads to rapid diabetes and marked alterations in islet morphology, ultrastructure and gene expression. Chronic hyperglycaemia is associated with a dramatic reduction in insulin-positive cells and an increase in glucagon-positive cells in islets, without alterations in cell turnover. Furthermore, some β-cells begin expressing glucagon, whilst retaining many β-cell characteristics. Hyperglycaemia, rather than KATP channel activation, underlies these changes, as they are prevented by insulin therapy and fully reversed by sulphonylureas. Our data suggest that many changes in islet structure and function associated with diabetes are attributable to hyperglycaemia alone and are reversed when blood glucose is normalized

    Mice expressing a human KATP channel mutation have altered channel ATP sensitivity but no cardiac abnormalities

    Get PDF
    AIMS/HYPOTHESIS: Patients with severe gain-of-function mutations in the Kir6.2 subunit of the ATP-sensitive potassium (K(ATP)) channel, have neonatal diabetes, muscle hypotonia and mental and motor developmental delay-a condition known as iDEND syndrome. However, despite the fact that Kir6.2 forms the pore of the cardiac K(ATP) channel, patients show no obvious cardiac symptoms. The aim of this project was to use a mouse model of iDEND syndrome to determine whether iDEND mutations affect cardiac function and cardiac K(ATP) channel ATP sensitivity. METHODS: We performed patch-clamp and in vivo cine-MRI studies on mice in which the most common iDEND mutation (Kir6.2-V59M) was targeted to cardiac muscle using Cre-lox technology (m-V59M mice). RESULTS: Patch-clamp studies of isolated cardiac myocytes revealed a markedly reduced K(ATP) channel sensitivity to MgATP inhibition in m-V59M mice (IC(50) 62 μmol/l compared with 13 μmol/l for littermate controls). In vivo cine-MRI revealed there were no gross morphological differences and no differences in heart rate, end diastolic volume, end systolic volume, stroke volume, ejection fraction, cardiac output or wall thickening between m-V59M and control hearts, either under resting conditions or under dobutamine stress. CONCLUSIONS/INTERPRETATION: The common iDEND mutation Kir6.2-V59M decreases ATP block of cardiac K(ATP) channels but was without obvious effect on heart function, suggesting that metabolic changes fail to open the mutated channel to an extent that affects function (at least in the absence of ischaemia). This may have implications for the choice of sulfonylurea used to treat neonatal diabetes

    Local Induction of Immunosuppressive CD8+ T Cells in the Gut-Associated Lymphoid Tissues

    Get PDF
    Background: In contrast to intestinal CD4 + regulatory T cells (Tregs), the generation and function of immunomodulatory intestinal CD8 + T cells is less well defined. To dissect the immunologic mechanisms of CD8 + T cell function in the mucosa, reactivity against hemagglutinin (HA) expressed in intestinal epithelial cells of mice bearing a MHC class-I-restricted T-cellreceptor specific for HA was studied. Methodology and Principal Findings: HA-specific CD8 + T cells were isolated from gut-associated tissues and phenotypically and functionally characterized for the expression of Foxp3 + and their suppressive capacity. We demonstrate that intestinal HA expression led to peripheral induction of HA-specific CD8 + Foxp3 + T cells. Antigen-experienced CD8 + T cells in this transgenic mouse model suppressed the proliferation of CD8 + and CD4 + T cells in vitro. Gene expression analysis of suppressive HA-specific CD8 + T cells revealed a specific up-regulation of CD103, Nrp1, Tnfrsf9 and Pdcd1, molecules also expressed on CD4 + T reg subsets. Finally, gut-associated dendritic cells were able to induce HA-specific CD8 + Foxp3 + T cells. Conclusion and Significance: We demonstrate that gut specific antigen presentation is sufficient to induce CD8 + T regs in vivo which may maintain intestinal homeostasis by down-modulating effector functions of T cells

    A screening tool to prioritize public health risk associated with accidental or deliberate release of chemicals into the atmosphere

    Get PDF
    The Chemical Events Working Group of the Global Health Security Initiative has developed a flexible screening tool for chemicals that present a risk when accidentally or deliberately released into the atmosphere. The tool is generic, semi-quantitative, independent of site, situation and scenario, encompasses all chemical hazards (toxicity, flammability and reactivity), and can be easily and quickly implemented by non-subject matter experts using freely available, authoritative information. Public health practitioners and planners can use the screening tool to assist them in directing their activities in each of the five stages of the disaster management cycle

    Pulsatility of insulin release – a clinically important phenomenon

    Get PDF
    The mechanisms and clinical importance of pulsatile insulin release are presented against the background of more than half a century of companionship with the islets of Langerhans. The insulin-secreting β-cells are oscillators with intrinsic variations of cytoplasmic ATP and Ca2+. Within the islets the β-cells are mutually entrained into a common rhythm by gap junctions and diffusible factors (ATP). Synchronization of the different islets in the pancreas is supposed to be due to adjustment of the oscillations to the same phase by neural output of acetylcholine and ATP. Studies of hormone secretion from the perfused pancreas of rats and mice revealed that glucose induces pulses of glucagon anti-synchronous with pulses of insulin and somatostatin. The anti-synchrony may result from a paracrine action of somatostatin on the glucagon-producing α-cells. Purinoceptors have a key function for pulsatile release of islet hormones. It was possible to remove the glucagon and somatostatin pulses with maintenance of those of insulin with an inhibitor of the P2Y1 receptors. Knock-out of the adenosine A1 receptor prolonged the pulses of glucagon and somatostatin without affecting the duration of the insulin pulses. Studies of isolated human islets indicate similar relations between pulses of insulin, glucagon, and somatostatin as found during perfusion of the rodent pancreas. The observation of reversed cycles of insulin and glucagon adds to the understanding how the islets regulate hepatic glucose production. Current protocols for pulsatile intravenous infusion therapy (PIVIT) should be modified to mimic the anti-synchrony between insulin and glucagon normally seen in the portal blood
    corecore