63 research outputs found

    Posht-e-Badam Metallogenic Block (Central Iran): A suitable zone for REE mineralization

    Get PDF
    One of the most important ores for REE mineralization are iron oxide–apatite (IOA) deposits. The Posht-e-Badam Block (PBB) is a part of the Central Iranian geostructural zone which is the host of most important Fe deposits of Iran. Exploration studies of the IOA deposits within the PBB (e.g. Esphordi, Gazestan, Zarigan, Lak-e-Siah, Sechahoun, Chahgaz, Mishdovan, Cheshmeh Firouzi and Shekarab) demonstrate that these deposits contain high contents of REE. Concentrations of ΣREE in the most important IOA deposits of the PBB include the following: the Esphordi deposit varies between 1.2 and 1.88%, the Gazestan deposit between 0.17 and 1.57%, the Zarigan deposit between 0.5 and 1.2% and the Lak-e-Siah deposit varies between 0.45 and 1.36%. Concentrations of ΣREE within the apatite crystals present within the IOA ores in the Esphordi, Lak-e-Siah and Homeijan deposits have ranges between 1.9–2.54%, 1.9–2.16% and of 2.55%, respectively. These elements are mainly concentrated in apatite crystals, but other minerals such as monazite, xenotime, bastnasite, urtite, alanite, thorite, parisite–synchysite and britholite have been recognized as hosts of REEs, as small inclusions within the apatite crystals, and in subsequent carbonate, hematite–carbonate and quartz veins and veinlets. Given the extent of this block and the presence of several IOA deposits within this block, and also the high grades of REEs within these deposits, one can reasonably state that it is obvious that there are significant resources of REEs in this part of Iran

    Intermediate sulfidation type base metal mineralization at Aliabad-Khanchy, Tarom-Hashtjin metallogenic belt, NW Iran

    Get PDF
    The Aliabad-Khanchy epithermal base metal deposit is located in the Tarom-Hashtjin metallogenic belt (THMB) of northwest Iran. The mineralization occurs as Cu-bearing brecciated quartz veins hosted by Eocene volcanic and volcaniclastic rocks of the Karaj Formation. Ore formation can be divided into five stages, with most ore minerals, such as pyrite and chalcopyrite being formed in the early stages. The main wall-rock alteration is silicification, and chlorite, argillic and propylitic alteration. Microthermometric measurements of fluid inclusion assemblages show that the ore-forming fluids have eutectic temperatures between −30° and −52°C, trapping temperatures of 150° to 290°C, and salinities of 6.6 to 12.4 wt.% NaCl equiv. These data demonstrate that the ore-forming fluids were medium- to high-temperature, medium- to low-salinity, and low-density H2O–NaCl–CaCl2 fluids. Calculated δ18O values indicate that ore-forming hydrothermal fluids had δ18Owater ranging from +3.6 to +0.8‰, confirming that the ore–fluid system evolved from dominantly magmatic to dominantly meteoric. The calculated 34SH2S values range from –8.1 to –5.0‰, consistent with derivation of the sulfur from either magma or possibly from local volcanic wall-rock. Combined, the fluid inclusion and stable isotope data indicate that the Aliabad-Khanchy deposit formed from magmatic-hydrothermal fluids. After rising to a depth of between 790 and 500 m, the fluid boiled and subsequent hydraulic fracturing may have led to inflow and/or mixing of early magmatic fluids with circulating groundwater causing deposition of base metals due to dilution and/or cooling. The Aliabad-Khanchy deposit is interpreted as an intermediate-sulfidation style of epithermal mineralization. Our data suggest that the mineralization at Aliabad-Khanchy and other epithermal deposits of the THMB formed by hydrothermal activity related to shallow late Eocene magmatism. The altered Eocene volcanic and volcaniclastic rocks, especially at the intersection of subvolcanic stocks with faults were the most favorable sites for epithermal ore bodies in the THMB

    Frequency of cognitive impairment in patients with parkinson\u27s disease

    Get PDF
    Introduction More than its motor symptoms, cognitive impairment is being increasingly identified as a cause of worse functional outcome, morbidity and mortality, and caregiver dependence in Parkinson\u27s disease (PD). The aim of this study was to identify the frequency of cognitive decline and evaluate the factors associated with it. Methods In this cross-sectional study, 124 PD patients fulfilling the United Kingdom Parkinson\u27s Disease Society Brain Bank Clinical Diagnostic Criteria were included. Motor and non-motor symptoms were recorded. Disease duration, age at the time of onset, and severity of disease on Hoehn and Yahr Scale (HY scale) were recorded. Data was entered and analyzed using SPSSs v. 22.0. Results The ratio of men to women was 7.2:1. The mean age of the participants was 64 ± 10 years (range: 38-82 years). Rigidity (n = 121; 97.5%), bradykinesia (n = 119; 95.9%), and tremor (n = 11; 90.3%) were the three most common symptoms. Cognitive impairment was present in 45 (36.3%) patients. Cognitive decline was more frequent in patients of age less than 50 years at the time of disease onset (p \u3c 0.00001) and in those with disease duration more than 10 years (p = 0.00001). Patients with longer disease duration had more severe disease (stage III or above on HY scale; p = 0.008). Conclusion Motor symptoms such as rigidity, bradykinesia, and tremor remain the most frequent clinical presentation among Pakistani Parkinson\u27s patients. One-third of these patients have cognitive dysfunction. Early age at the time of disease onset and longer duration of disease were associated with cognitive impairmen

    Petrology and petrogenesis of Kamtal Intrusion Eastern Azarbaijan, NW Ian

    Get PDF
    Abstract The Kamtal Intrusion is located in Eastern Azarbaijan province, northwestern Iran, near the Armenian border. This body consists of an acidic part of monzogranitic composition, and an intermediate-basic part which is composed of quartz-monzonite and gabbro. The gabbro forms lenses within the intermediate rocks. Monzogranite has been intruded into the quartz-monzonite. Both monzogranites and quartz-monzonites are high-K calk-alkaline and metaluminous in composition and can be classified as I-type granitoids, while the gabbro has tholeiitic affinity. Monzogranite and quartz-monzonite are characterized by LREE-rich patterns and high LREE/HREE ratios. The similarities of their REE patterns suggest a genetic relationship among these rocks. The geochemical characters of the gabbro types indicate two different patterns: a flat pattern with low LREE/HREE ratio, and a steep pattern with high LREE/HREE ratio. The former was probably produced by high melting ratio of a depleted mantle source, and the steep pattern probably was the result of a low melting ratio of this mantle source. Negative anomalies of Nb and Ti can be seen in all rock types of the Kamtal Intrusion, which is indicative of subduction zones. The comparison of trace element variations with granitoid rocks of different tectonic settings allows observing a similarity between the Kamtal Intrusion and Andean volcanic arc granitoids. The Kamtal body is related to the VAG tectonic setting and was probably produced as a result of Khoy back-arc basin subduction beneath the Azerbaijan continental crust

    MicroRNA-100 Reduced Fetal Bovine Muscle Satellite Cell Myogenesis and Augmented Intramuscular Lipid Deposition by Modulating IGF1R

    Get PDF
    Previously, microRNA-100 (miR-100) and its putative mRNA target, insulin-like growth factor receptor-1 (IGF1R) were identified as differentially and inversely expressed in bovine longissimus dorsi (LD) muscles with divergent intramuscular fat (IMF) content by our group. While IGF1R signaling is implicated in myogenesis and muscle lipid metabolism, the underlying regulatory mechanisms are poorly understood. In the present study, we aimed to investigate the regulation of IGF1R by miR-100 during bovine muscle satellite cell (BMSC) myogenesis and lipid deposition. MiR-100 was confirmed to target the IGF1R 3 '-untranslated region (3 '-UTR) by luciferase reporter assay. Furthermore, expression of miR-100 and IGF1R was reciprocal during BMSC differentiation, suggesting a crosstalk between the two. Correspondingly, miR-100 mimic (agomiR) suppressed the levels of IGF1R, PI3K/AKT pathway signaling, myogenic gene MYOG, muscle structural components MYH7 and MYH8, whereas the inhibitor (antagomiR) had no clear stimulating effects. The IGF1R inhibitor (BMS-754807) curtailed receptor levels and triggered atrophy in muscle myotubes but did not influence miR-100 expression. AgomiR increased oleic acid-induced lipid deposition in BMSC myotubes supporting its involvement in intramuscular fat deposition, while antagomiR had no effect. Moreover, mitochondrial beta-oxidation and long-chain fatty acid synthesis-related genes were modulated by agomiR addition. Our results demonstrate modulatory roles of miR-100 in BMSC development, lipid deposition, and metabolism and suggest a role of miR-100 in marbling characteristics of meat animals and fat oxidation in muscle.Peer reviewe

    Lithological sequence, geochemistry and Sr, Nd and Pb isotopic data of Marshoun volcanic rocks, North Abhar (Tarom-Hashtjin subzone)

    Get PDF
    Marshoun area located 120Km Southeast of Zanjan, is a part of the Tarom-Hashtjin metallogenic-magmatic subzone within the Alborz-Azarbaijan zone. Similar to most parts of the Alborz-Azarbaijan zone, the Eocene-Oligocene volcanic and the intrusive rocks of this subzone were formed as a result of the Alpine orogenic phase, which has a close spatial and temporal relationship with metallic mineralization (Kouhestani et al., 2019). Several studies have been conducted on metallic mineralizations in different parts of the Tarom-Hashtjin subzone. The petrological studies carried out in this subzone are mainly focused on intrusive rocks (e.g., Seyed Qaraeini et al., 2020) and volcanic rocks' geochemical and petrological characteristics have been less considered. Marshoun area is composed of volcanic-sedimentary sequences which are hosts for Pb-Zn-Cu mineralization (Kouhestani et al., 2019). A detailed scientific study has not been done on the lithological sequence and their geochemical and petrological characteristics in the Marshoun area so far. In the present study, the lithological and geochemical characteristics including Sr, Nd, and Pb isotopic data, as well as the tectonomagmatic environment of the volcanic rocks of the area have been investigated.Materials and methodsDuring fieldwork, a 1:25000 geological map prepared from different lithological units of the area and over 30 samples were taken. Also, 17 thin sections for petrographical studies, 10 samples for chemical and 4 samples (2 andesites and 2 dacites) for iaoopic analyses. Chemical analyses (XRF and ICP–MS methods) were carried out at Zarazma Laboratory, Tehran, Iran., and isotopic studies (i.e. Nd, Sr, and Pb isotope studies at Institute of Geology and Geophysics, Chinese Academy of Geosciences, Beijing, China.ResultsThe predominant rock units in the Marshoun area are Eocene acidic tuffs, dacitic-rhyodacitic lava, and occasionally ignimbrite at the base and alternation of intermediate tuff with minor andesite and basaltic andesite intercalation in the top, along with some intrusive rocks with (Zajkan intrusion), and some gabbroic dykes.Zajkan intrusion including pyroxene quartz monzodiorite, quartz monzodiorite, and granodiorite composition intruded acidic volcano-sedimentary rocks with a total thickness of 930 meters can be divided into 9 parts.Volcanic rocks of the Marshoun area are classified as rhyolite, rhyodacite, dacite, andesite, basaltic andesite, and trachy-andesite with high-K calc-alkaline affinity. Dacitic-rhyodacitic rocks have porphyritic, flow, and spherolitic textures, composed of plagioclase, quartz, alkali feldspar, and mafic minerals (amphibole and biotite) set in a quartz-felspathic groundmass whereas, andesitic rocks show porphyritic, glomeroporphyritic, and amygdaloidal textures, composed of plagioclase and mafic minerals (amphibole and some pyroxene) set in a fine-grained and occasionally microlithic groundmass.All samples under study on primitive mantle normalized spider diagrams, have similar patterns indicative of their genetic relations. LILEs and HFSEs. negative anomalies are remarkable features of these rocks. Chondrite-normalized REE patterns demonstrate a relatively steep to low slope pattern with LREE enrichment and a high ratio of LREE/HREE, (La/Yb)N, and (La/Sm)N ratio between 3.8-30.1 and 1.2-8.25, respectively. On tectonomagmatic setting discrimination diagrams, volcanic rocks of the Marshoun area have been formed in an active continental margin tectonic setting. Isotopic data of Sr (0.70485-0.70622), Nd (0.512695-0.712733), and Pb (206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb between 18.743-18.803, 15.5938-15.6112 and 38.8138-18.0721, respectively) point to dominant role of mantle in the formation of the investigated rocks. According to the Pb isotopes, the area's acidic rocks originated either from a more enriched mantle or were contaminated by crustal materials during ascending magma.Discussion and ConclusionAs the geochemical data indicate the primary magma of Marshoun volcanic rocks is generated by the partial melting of subcontinental metasomatized mantle lithosphere as a result of the subduction process within the continental margin environment. According to data obtained from the present study as well as the previous research, it can be concluded that the result of the subduction of the active continental margin and the shortening of the crust in Alborz during the Eocene gave rise to the thickening of continental crust and further led to the separation and subsidence of the lower part of the subcontinental lithospheric mantle (delamination).As a result of this event, the ascending of asthenosphere currents has led to an increase in the thermal gradient and partial melting of the subcontinental lithosphere and generation of basic magma which during ascending contaminated by crustal materials. Finally, the differentiation process led to the formation of intermediate and acidic rocks.AcknowledgmentThis research study was made possible by a grant from the office of the vice-chancellor of research and technology, University of Zanjan. We hereby acknowledge their generous support. The Journal of Petrology reviewers and editor are also thanked for their constructive comment

    Fluid inclusion, zircon U-Pb geochronology, and O-S isotopic constraints on the origin and evolution of ore-forming fluids of the tashvir and varmazyar epithermal base metal deposits, NW Iran

    Get PDF
    Tashvir and Varmazyar deposits are part of the epithermal ore system in the Tarom–Hashtjin Metallogenic Belt (THMB), NW Iran. In both deposits, epithermal veins are hosted by Eocene volcanic-volcaniclastic rocks of the Karaj Formation and are spatially associated with late Eocene granitoid intrusions. The ore assemblages consist of pyrite, chalcopyrite, chalcocite, galena, and sphalerite (Fe-poor), with lesser amounts of bornite and minor psilomelane and pyrolusite. Fluid inclusion measurements from the Tashvir and Varmazyar revealed 182–287 and 194–285°C formation temperatures and 2.7–7.9 and 2.6–6.4 wt.% NaCl equivalent salinities, respectively. The oxygen isotope data suggested that the mineralizing fluids originated dominantly from a magmatic fluid that mixed with meteoric waters. The sulfur isotope data indicated that the metal and sulfur sources were largely a mixture of magma and surrounding sedimentary rocks. LA-ICP–MS zircon U–Pb dating of the granitoid intrusion at Tashvir and Varmazyar, yielded a weighted mean age of 38.34–38.31 and 40.85 Ma, respectively, indicating that epithermal mineralization developed between 40.85 and 38.31 Ma. Our data indicated that fluid mixing along with some fluid boiling were the main drives for hydrothermal alteration and mineralization at Tashvir and Varmazyar. All these characteristics suggested an intermediate-sulfidation epithermal style of mineralization. The THMB is proposed to be prospective for precious and base metal epithermal mineralization. Considering the extensional tectonic setting, and lack of advanced argillic lithocaps and hypersaline fluid inclusions, the THMB possibly has less potential for economically important porphyry mineralization

    Examination of the Behavior of Gravity Quay Wall against Liquefaction under the Effect of Wall Width and Soil Improvement

    Get PDF
    Deformation of quay walls is one of the main sources of damage to port facility while liquefaction of backfill and base soil of the wall are the main reasons for failures of quay walls. During earthquakes, the most susceptible materials for liquefaction in seashore regions are loose saturated sand. In this study, effects of enhancing the wall width and the soil improvement on the behavior of gravity quay walls are examined in order to obtain the optimum improved region. The FLAC 2D software was used for analyzing and modeling progressed models of soil and loading under difference conditions. Also, the behavior of liquefiable soil is simulated by the use of “Finn” constitutive model in the analysis models. The “Finn” constitutive model is especially created to determine liquefaction phenomena and excess pore pressure generation

    Advances in Nematode Identification: A Journey from Fundamentals to Evolutionary Aspects

    Get PDF
    Nematodes are non-segmented roundworms evenly distributed with various habitats ranging to approximately every ecological extremity. These are the least studied organisms despite being the most diversified group. Nematodes are the most critical equilibrium-maintaining factors, having implications on the yield and health of plants as well as well-being of animals. However, taxonomic knowledge about nematodes is scarce. As a result of the lack of precise taxonomic features, nematode taxonomy remains uncertain. Morphology-based identification has proved inefficacious in identifying and exploring the diversity of nematodes, as there are insufficient morphological variations. Different molecular and new evolving methodologies have been employed to augment morphology-based approaches and bypass these difficulties with varying effectiveness. These identification techniques vary from molecular-based targeting DNA or protein-based targeting amino acid sequences to methods for image processing. High-throughput approaches such as next-generation sequencing have also been added to this league. These alternative approaches have helped to classify nematodes and enhanced the base for increased diversity and phylogeny of nematodes, thus helping to formulate increasingly more nematode bases for use as model organisms to study different hot topics about human well-being. Here, we discuss all the methods of nematode identification as an essential shift from classical morphometric studies to the most important modern-day and molecular approaches for their identification. Classification varies from DNA/protein-based methods to the use of new emerging methods. However, the priority of the method relies on the quality, quantity, and availability of nematode resources and down-streaming applications. This paper reviews all currently offered methods for the detection of nematodes and known/unknown and cryptic or sibling species, emphasizing modern-day methods and budding molecular techniques

    Evaluating the safety and efficacy of zuranolone in the management of major depressive disorder and postpartum depression, with or without concurrent insomnia: a rigorous systematic review and meta-analysis

    Get PDF
    IntroductionMajor depressive disorder (MDD), postpartum depression (PPD), and insomnia are neuropsychological conditions in which zuranolone is used to improve symptoms and prognosis of the disorder. This meta-analysis aimed to determine the efficacy of zuranolone in comparison to other drugs used for treating these conditions.MethodsThis meta-analysis included patients aged between 18 and 75 years who were diagnosed with major depressive disorder and postpartum depression with or without insomnia and were administered zuranolone for treatment. Only randomized controlled trials (RCTs) were included, and animal studies were excluded. The databases used were PubMed, Scopus, Cochrane, and Clinicaltrials.gov, with MeSH terms and relevant keywords for (Zuranolone) and (Depression). The Cochrane risk of bias tool was used for quality assessment.ResultsThe meta-analysis included eight RCTs that analyzed data from 2031 patients. The meta-analysis revealed statistically significant changes in the Hamilton Depression Rating Scale (HAM-D), Montgomery-Åsberg Depression Rating Scale (MADRS), Hamilton Anxiety Rating Scale (HAM-A), and treatment-emergent adverse effects (TEAE) scores in the PPD subgroup. HAM-D and TEAEs scores were also significant in the MDD subgroup, but the changes in the MADRS, HAM-A, and Bech-6 scores were insignificant. Serious adverse events were insignificant in all subgroups.ConclusionMeta-analysis found a significant improvement in depressive symptoms with zuranolone treatment, especially on day 15. This suggests that zuranolone is a promising therapeutic option for patients with MDD and PPD with or without insomnia.Systematic review registrationhttps://www.crd.york.ac.uk/prospero/display_record.php?RecordID=459554, identifier CRD42023459554
    corecore