15 research outputs found

    GSR Analysis for Stress: Development and Validation of an Open Source Tool for Noisy Naturalistic GSR Data

    Full text link
    The stress detection problem is receiving great attention in related research communities. This is due to its essential part in behavioral studies for many serious health problems and physical illnesses. There are different methods and algorithms for stress detection using different physiological signals. Previous studies have already shown that Galvanic Skin Response (GSR), also known as Electrodermal Activity (EDA), is one of the leading indicators for stress. However, the GSR signal itself is not trivial to analyze. Different features are extracted from GSR signals to detect stress in people like the number of peaks, max peak amplitude, etc. In this paper, we are proposing an open-source tool for GSR analysis, which uses deep learning algorithms alongside statistical algorithms to extract GSR features for stress detection. Then we use different machine learning algorithms and Wearable Stress and Affect Detection (WESAD) dataset to evaluate our results. The results show that we are capable of detecting stress with the accuracy of 92 percent using 10-fold cross-validation and using the features extracted from our tool.Comment: 6 pages and 5 figures. Link to the github of the tool: https://github.com/HealthSciTech/pyED

    Detection of COVID-19 Using Heart Rate and Blood Pressure: Lessons Learned from Patients with ARDS

    Full text link
    The world has been affected by COVID-19 coronavirus. At the time of this study, the number of infected people in the United States is the highest globally (7.9 million infections). Within the infected population, patients diagnosed with acute respiratory distress syndrome (ARDS) are in more life-threatening circumstances, resulting in severe respiratory system failure. Various studies have investigated the infections to COVID-19 and ARDS by monitoring laboratory metrics and symptoms. Unfortunately, these methods are merely limited to clinical settings, and symptom-based methods are shown to be ineffective. In contrast, vital signs (e.g., heart rate) have been utilized to early-detect different respiratory diseases in ubiquitous health monitoring. We posit that such biomarkers are informative in identifying ARDS patients infected with COVID-19. In this study, we investigate the behavior of COVID-19 on ARDS patients by utilizing simple vital signs. We analyze the long-term daily logs of blood pressure and heart rate associated with 70 ARDS patients admitted to five University of California academic health centers (containing 42506 samples for each vital sign) to distinguish subjects with COVID-19 positive and negative test results. In addition to the statistical analysis, we develop a deep neural network model to extract features from the longitudinal data. Using only the first eight days of the data, our deep learning model is able to achieve 78.79% accuracy to classify the vital signs of ARDS patients infected with COVID-19 versus other ARDS diagnosed patients

    Context-Aware Stress Monitoring using Wearable and Mobile Technologies in Everyday Settings

    Full text link
    Daily monitoring of stress is a critical component of maintaining optimal physical and mental health. Physiological signals and contextual information have recently emerged as promising indicators for detecting instances of heightened stress. Nonetheless, developing a real-time monitoring system that utilizes both physiological and contextual data to anticipate stress levels in everyday settings while also gathering stress labels from participants represents a significant challenge. We present a monitoring system that objectively tracks daily stress levels by utilizing both physiological and contextual data in a daily-life environment. Additionally, we have integrated a smart labeling approach to optimize the ecological momentary assessment (EMA) collection, which is required for building machine learning models for stress detection. We propose a three-tier Internet-of-Things-based system architecture to address the challenges. We utilized a cross-validation technique to accurately estimate the performance of our stress models. We achieved the F1-score of 70\% with a Random Forest classifier using both PPG and contextual data, which is considered an acceptable score in models built for everyday settings. Whereas using PPG data alone, the highest F1-score achieved is approximately 56\%, emphasizing the significance of incorporating both PPG and contextual data in stress detection tasks

    Sleep tracking of a commercially available smart ring and smartwatch against medical-grade actigraphy in everyday settings: instrument validation study

    Get PDF
    Background: Assessment of sleep quality is essential to address poor sleep quality and understand changes. Owing to the advances in the Internet of Things and wearable technologies, sleep monitoring under free-living conditions has become feasible and practicable. Smart rings and smartwatches can be employed to perform mid- or long-term home-based sleep monitoring. However, the validity of such wearables should be investigated in terms of sleep parameters. Sleep validation studies are mostly limited to short-term laboratory tests; there is a need for a study to assess the sleep attributes of wearables in everyday settings, where users engage in their daily routines.Objective: This study aims to evaluate the sleep parameters of the Oura ring along with the Samsung Gear Sport watch in comparison with a medically approved actigraphy device in a midterm everyday setting, where users engage in their daily routines.Methods: We conducted home-based sleep monitoring in which the sleep parameters of 45 healthy individuals (23 women and 22 men) were tracked for 7 days. Total sleep time (TST), sleep efficiency (SE), and wake after sleep onset (WASO) of the ring and watch were assessed using paired t tests, Bland-Altman plots, and Pearson correlation. The parameters were also investigated considering the gender of the participants as a dependent variable.Results: We found significant correlations between the ring's and actigraphy's TST (r=0.86; PConclusions: In a sample population of healthy adults, the sleep parameters of both the Oura ring and Samsung watch have acceptable mean differences and indicate significant correlations with actigraphy, but the ring outperforms the watch in terms of the nonstaging sleep parameters.</p

    COVID Symptoms, Symptom Clusters, and Predictors for Becoming a Long-Hauler: Looking for Clarity in the Haze of the Pandemic

    Get PDF
    Emerging data suggest that the effects of infection with SARS-CoV-2 are far reaching extending beyond those with severe acute disease. Specifically, the presence of persistent symptoms after apparent resolution from COVID-19 have frequently been reported throughout the pandemic by individuals labeled as “long-haulers”. The purpose of this study was to assess for symptoms at days 0-10 and 61+ among subjects with PCR-confirmed SARS-CoV-2 infection. The University of California COvid Research Data Set (UC CORDS) was used to identify 1407 records that met inclusion criteria. Symptoms attributable to COVID-19 were extracted from the electronic health record. Symptoms reported over the previous year prior to COVID-19 were excluded, using nonnegative matrix factorization (NMF) followed by graph lasso to assess relationships between symptoms. A model was developed predictive for becoming a long-hauler based on symptoms. 27% reported persistent symptoms after 60 days. Women were more likely to become long-haulers, and all age groups were represented with those aged 50 ± 20 years comprising 72% of cases. Presenting symptoms included palpitations, chronic rhinitis, dysgeusia, chills, insomnia, hyperhidrosis, anxiety, sore throat, and headache among others. We identified 5 symptom clusters at day 61+: chest pain-cough, dyspnea-cough, anxiety-tachycardia, abdominal pain-nausea, and low back pain-joint pain. Long-haulers represent a very significant public health concern, and there are no guidelines to address their diagnosis and management. Additional studies are urgently needed that focus on the physical, mental, and emotional impact of long-term COVID-19 survivors who become long-haulers

    A Technology-Based Pregnancy Health and Wellness Intervention (Two Happy Hearts): Case Study.

    No full text
    BackgroundThe physical and emotional well-being of women is critical for healthy pregnancy and birth outcomes. The Two Happy Hearts intervention is a personalized mind-body program coached by community health workers that includes monitoring and reflecting on personal health, as well as practicing stress management strategies such as mindful breathing and movement.ObjectiveThe aims of this study are to (1) test the daily use of a wearable device to objectively measure physical and emotional well-being along with subjective assessments during pregnancy, and (2) explore the user's engagement with the Two Happy Hearts intervention prototype, as well as understand their experiences with various intervention components.MethodsA case study with a mixed design was used. We recruited a 29-year-old woman at 33 weeks of gestation with a singleton pregnancy. She had no medical complications or physical restrictions, and she was enrolled in the Medi-Cal public health insurance plan. The participant engaged in the Two Happy Hearts intervention prototype from her third trimester until delivery. The Oura smart ring was used to continuously monitor objective physical and emotional states, such as resting heart rate, resting heart rate variability, sleep, and physical activity. In addition, the participant self-reported her physical and emotional health using the Two Happy Hearts mobile app-based 24-hour recall surveys (sleep quality and level of physical activity) and ecological momentary assessment (positive and negative emotions), as well as the Perceived Stress Scale, Center for Epidemiologic Studies Depression Scale, and State-Trait Anxiety Inventory. Engagement with the Two Happy Hearts intervention was recorded via both the smart ring and phone app, and user experiences were collected via Research Electronic Data Capture satisfaction surveys. Objective data from the Oura ring and subjective data on physical and emotional health were described. Regression plots and Pearson correlations between the objective and subjective data were presented, and content analysis was performed for the qualitative data.ResultsDecreased resting heart rate was significantly correlated with increased heart rate variability (r=-0.92, P&lt;.001). We found significant associations between self-reported responses and Oura ring measures: (1) positive emotions and heart rate variability (r=0.54, P&lt;.001), (2) sleep quality and sleep score (r=0.52, P&lt;.001), and (3) physical activity and step count (r=0.77, P&lt;.001). In addition, deep sleep appeared to increase as light and rapid eye movement sleep decreased. The psychological measures of stress, depression, and anxiety appeared to decrease from baseline to post intervention. Furthermore, the participant had a high completion rate of the components of the Two Happy Hearts intervention prototype and shared several positive experiences, such as an increased self-efficacy and a normal delivery.ConclusionsThe Two Happy Hearts intervention prototype shows promise for potential use by underserved pregnant women

    Pregnant women's daily patterns of well-being before and during the COVID-19 pandemic in Finland: Longitudinal monitoring through smartwatch technology.

    No full text
    BackgroundTechnology enables the continuous monitoring of personal health parameter data during pregnancy regardless of the disruption of normal daily life patterns. Our research group has established a project investigating the usefulness of an Internet of Things-based system and smartwatch technology for monitoring women during pregnancy to explore variations in stress, physical activity and sleep. The aim of this study was to examine daily patterns of well-being in pregnant women before and during the national stay-at-home restrictions related to the COVID-19 pandemic in Finland.MethodsA longitudinal cohort study design was used to monitor pregnant women in their everyday settings. Two cohorts of pregnant women were recruited. In the first wave in January-December 2019, pregnant women with histories of preterm births (gestational weeks 22-36) or late miscarriages (gestational weeks 12-21); and in the second wave between October 2019 and March 2020, pregnant women with histories of full-term births (gestational weeks 37-42) and no pregnancy losses were recruited. The final sample size for this study was 38 pregnant women. The participants continuously used the Samsung Gear Sport smartwatch and their heart rate variability, and physical activity and sleep data were collected. Subjective stress, activity and sleep reports were collected using a smartphone application developed for this study. Data between February 12 to April 8, 2020 were included to cover four-week periods before and during the national stay-at-home restrictions. Hierarchical linear mixed models were exploited to analyze the trends in the outcome variables.ResultsThe pandemic-related restrictions were associated with changes in heart rate variability: the standard deviation of all normal inter-beat intervals (p = 0.034), low-frequency power (p = 0.040) and the low-frequency/high-frequency ratio (p = 0.013) increased compared with the weeks before the restrictions. Women's subjectively evaluated stress levels also increased significantly. Physical activity decreased when the restrictions were set and as pregnancy proceeded. The total sleep time also decreased as pregnancy proceeded, but pandemic-related restrictions were not associated with sleep. Daily rhythms changed in that the participants overall started to sleep later and woke up later.ConclusionsThe findings showed that Finnish pregnant women coped well with the pandemic-related restrictions and lockdown environment in terms of stress, physical activity and sleep
    corecore