106 research outputs found
Environmental monitoring in the Mechara caves, Southeastern Ethiopia: implications for speleothem palaeoclimate studies
The interpretation of palaeoclimate records in speleothems depends on the understanding of the modern climate of the region, the geology, the hydrology above the caves, and the within-cave climate. Monitoring within-cave climate variability, geochemistry of speleothem-forming drip waters, and associated surface and groundwater, provides a modern baseline for interpretation of speleothem palaeohydrological and palaeoclimate records. Here, we present results of such monitoring of the Mechara caves in southeastern Ethiopia, conducted between 2004 and 2007. Results show nearly constant within-cave climate (temperature and humidity) in all caves, which generally reflects the surface climate. Groundwater and surface water geochemistry is similar across the region (except slight modification by local lithological variations) and modern drip water isotope data fall close to regional Meteoric Water Line, but speleothems further from equilibrium. Holocene and modern speleothems from these caves give high-resolution climate records, implying that the Mechara caves provide a suitable setting for the deposition of annually laminated speleothems that could record surface climate variability in a region where rainfall is sensitive to both the strength of the intertropical convergence zone as well as Indian Monsoon variability
Abrupt or gradual?:Change point analysis of the late Pleistocene–Holocene climate record from Chew Bahir, southern Ethiopia
We used a change point analysis on a late Pleistocene-Holocene lake-sediment record from the Chew Bahir basin in the southern Ethiopian Rift to determine the amplitude and duration of past climate transitions. The most dramatic changes occurred over 240 yr (from similar to 15,700 to 15,460 yr) during the onset of the African Humid Period (AHP), and over 990 yr (from similar to 4875 to 3885 yr) during its protracted termination. The AHP was interrupted by a distinct dry period coinciding with the high-latitude Younger Dryas stadial, which had an abrupt onset (less than similar to 100 yr) at similar to 13,260 yr and lasted until similar to 11,730 yr. Wet-dry-wet transitions prior to the AHP may reflect the high-latitude Dansgaard-Oeschger cycles, as indicated by cross-correlation of the potassium record with the NorthGRIP ice core record between similar to 45-20 ka. These findings may contribute to the debates regarding the amplitude, and duration and mechanisms of past climate transitions, and their possible influence on the development of early modern human cultures
Environmental change and human occupation of southern Ethiopia and northern Kenya during the last 20,000 years
Our understanding of the impact of climate-driven environmental change on prehistoric human populations is hampered by the scarcity of continuous paleoenvironmental records in the vicinity of archaeological sites. Here we compare a continuous paleoclimatic record of the last 20 ka before present from the Chew Bahir basin, southwest Ethiopia, with the available archaeological record of human presence in the region. The correlation of this record with orbitally-driven insolation variations suggests a complex nonlinear response of the environment to climate forcing, reflected in several long-term and short-term transitions between wet and dry conditions, resulting in abrupt changes between favorable and unfavorable living conditions for humans. Correlating the archaeological record in the surrounding region of the Chew Bahir basin, presumably including montane and lake-marginal refugia for human populations, with our climate record suggests a complex interplay between humans and their environment during the last 20 ka. The result may contribute to our understanding of how a dynamic environment may have impacted the adaptation and dispersal of early humans in eastern Africa. (C) 2015 Elsevier Ltd. All rights reserved
Determining the Pace and Magnitude of Lake Level Changes in Southern Ethiopia Over the Last 20,000 Years Using Lake Balance Modeling and SEBAL
The Ethiopian rift is known for its diverse landscape, ranging from arid and semi-arid savannahs to high and humid mountainous regions. Lacustrine sediments and paleo-shorelines indicate water availability fluctuated dramatically from deep fresh water lakes, to shallow highly alkaline lakes, to completely desiccated lakes. To investigate the role lakes have played through time as readily available water sources to humans, an enhanced knowledge of the pace, character and magnitude of these changes is essential. Hydro-balance models are used to calculate paleo-precipitation rates and the potential pace of lake level changes. However, previous models did not consider changes in hydrological connectivity during humid periods in the rift system, which may have led to an overestimation of paleo-precipitation rates. Here we present a comprehensive hydro-balance modeling approach that simulates multiple rift lakes from the southern Ethiopian Rift (lakes Abaya, Chamo, and paleo-lake Chew Bahir) simultaneously, considering their temporal hydrological connectivity during high stands of the African Humid Period (AHP, ~15–5 ka). We further used the Surface Energy Balance Algorithm for Land (SEBAL) to calculate the evaporation of paleo-lake Chew Bahir's catchment. We also considered the possibility of an additional rainy season during the AHP as previously suggested by numerous studies. The results suggest that an increase in precipitation of 20–30% throughout the southern Ethiopian Rift is necessary to fill paleo-lake Chew Bahir to its overflow level. Furthermore, it was demonstrated that paleo-lake Chew Bahir was highly dependent on the water supply from the upper lakes Abaya and Chamo and dries out within ~40 years if the hydrological connection is cut off and the precipitation amount decreases to present day conditions. Several of such rapid lake level fluctuations, from a freshwater to a saline lake, might have occurred during the termination of the AHP, when humid conditions were less stable. Fast changes in fresh water availability requires high adaptability for humans living in the area and might have exerted severe environmental stress on humans in a sub-generational timescale
Glass compositions and tempo of post-17 ka eruptions from the Afar Triangle recorded in sediments from lakes Ashenge and Hayk, Ethiopia
AbstractNumerous volcanoes in the Afar Triangle and adjacent Ethiopian Rift Valley have erupted during the Quaternary, depositing volcanic ash (tephra) horizons that have provided crucial chronology for archaeological sites in eastern Africa. However, late Pleistocene and Holocene tephras have hitherto been largely unstudied and the more recent volcanic history of Ethiopia remains poorly constrained. Here, we use sediments from lakes Ashenge and Hayk (Ethiopian Highlands) to construct the first <17 cal ka BP tephrostratigraphy for the Afar Triangle. The tephra record reveals 21 visible and crypto-tephra layers, and our new database of major and trace element glass compositions will aid the future identification of these tephra layers from proximal to distal locations. Tephra compositions include comendites, pantellerites and minor peraluminous and metaluminous rhyolites. Variable and distinct glass compositions of the tephra layers indicate they may have been erupted from as many as seven volcanoes, most likely located in the Afar Triangle. Between 15.3−1.6 cal. ka BP, explosive eruptions occurred at a return period of <1000 years. The majority of tephras are dated at 7.5−1.6 cal. ka BP, possibly reflecting a peak in regional volcanic activity. These findings demonstrate the potential and necessity for further study to construct a comprehensive tephra framework. Such tephrostratigraphic work will support the understanding of volcanic hazards in this rapidly developing region
Advanced Hyperspectral Analysis of Sediment Core Samples from the Chew Bahir Basin, Ethiopian Rift, in the Spectral Range from 0.25 to 17 µm:Support for Climate Proxy Interpretation
Establishing robust environmental proxies at newly investigated terrestrial sedimentary archives is a challenge, because straightforward climate reconstructions can be hampered by the complex relationship between climate parameters and sediment composition, proxy preservation or (in)sufficient sample material. We present a minimally invasive hyperspectral bidirectional reflectance analysis on discrete samples in the wavelength range from 0.25 to 17 mu m on 35 lacustrine sediment core samples from the Chew Bahir Basin, southern Ethiopia for climate proxy studies. We identified and used absorption bands at 2.2 mu m (Al-OH), at 2.3 mu m (Mg-OH), at 1.16 mu m (analcime), and at 3.98 mu m (calcite) for quantitative spectral analysis. The band depth ratios at 2.3/2.2 mu m in the spectra correlate with variations in the potassium content of the sediment samples, which also reflect periods of increased Al-to-Mg substitution in clay minerals during drier climatic episodes. During these episodes of drier conditions, absorption bands diagnostic of the presence of analcime and calcite support this interpretation, with analcime indicating the driest conditions. These results could be compared to qualitative analysis of other characteristic spectral properties in the spectral range between 0.25 and 17 mu m. The results of the hyperspectral measurements complement previous sedimentological and geochemical analyses, allowing us in particular to resolve more finely the processes of weathering in the catchment and low-temperature authigenic processes in the sediment. This enables us to better understand environmental changes in the habitat of early humans
Combining orbital tuning and direct dating approaches to age-depth model development for Chew Bahir, Ethiopia
The directly dated RRMarch2021 age model (Roberts et al., 2021) for the ∼293 m long composite core from Chew Bahir, southern Ethiopia, has provided a valuable chronology for long-term climate changes in northeastern Africa. However, the age model has limitations on shorter time scales (less than 1–2 precession cycles), especially in the time range <20 kyr BP (kiloyears before present or thousand years before 1950) and between ∼155 and 428 kyr BP. To address those constraints we developed a partially orbitally tuned age model. A comparison with the ODP Site 967 record of the wetness index from the eastern Mediterranean, 3300 km away but connected to the Ethiopian plateau via the River Nile, suggests that the partially orbitally tuned age model offers some advantages compared to the exclusively directly dated age model, with the limitation of the reduced significance of (cross) spectral analysis results of tuned age models in cause-effect studies. The availability of this more detailed age model is a prerequisite for further detailed spatiotemporal correlations of climate variability and its potential impact on the exchange of different populations of Homo sapiens in the region
Spatio-temporal variations of climate along possible African-Arabian routes of H. sapiens expansion
Eastern Africa and Arabia were major hominin hotspots and critical crossroads for migrating towards Asia during the late Pleistocene. To decipher the role of spatiotemporal environmental change on human occupation and migration patterns, we remeasured the marine core from Meteor Site KL 15 in the Gulf of Aden and reanalyzed its data together with the aridity index from ICDP Site Chew Bahir in eastern Africa and the wet-dry index from ODP Site 967 in the eastern Mediterranean Sea using linear and nonlinear time series analysis. These analyses show major changes in the spatiotemporal paleoclimate dynamics at 400 and 150 ka BP (thousand years before 1950), presumably driven by changes in the amplitude of the orbital eccentricity. From 400 to 150 ka BP, eastern Africa and Arabia show synchronized wet-dry shifts, which changed drastically at 150 ka BP. After 150 ka BP, an overall trend to dry climate states is observable, and the hydroclimate dynamics between eastern Africa and Arabia are negatively correlated. Those spatio-temporal variations and interrelationships of climate potentially influenced the availability of spatial links for human expansion along those vertices. We observe positively correlated network links during the supposed out-of-Africa migration phases of H. sapiens. Furthermore, our data do not suggest hominin occupation phases during specific time intervals of humid or stable climates but provide evidence of the so far underestimated potential role of climate predictability as an important factor of hominin ecological competitiveness
- …