1,458 research outputs found
Uncertainties in the solar photospheric oxygen abundance
The purpose of this work is to better understand the confidence limits of the
photospheric solar oxygen abundance derived from three-dimensional models using
the forbidden [OI] line at 6300 \AA , including correlations with other
parameters involved. We worked with a three-dimensional empirical model and two
solar intensity atlases. We employed Bayesian inference as a tool to determine
the most probable value for the solar oxygen abundance given the model chosen.
We considered a number of error sources, such as uncertainties in the continuum
derivation, in the wavelength calibration and in the abundance/strength of Ni.
Our results shows correlations between the effects of several parameters
employed in the derivation. The Bayesian analysis provides robust confidence
limits taking into account all of these factors in a rigorous manner. We obtain
that, given the empirical three-dimensional model and the atlas observations
employed here, the most probable value for the solar oxygen abundance is
. However, we note that this uncertainty does
not consider possible sources of systematic errors due to the model choice.Comment: Accepted for publication in Astronomy and Astrophysic
The mode of action of hypotensive chemical substances.
Thesis (M.A.)--Boston UniversityHypertension is a disease having a high death incidence. Hypertensive conditions have been classified as symptomatic, essential and renal.
Symptomatic hypertension includes psychological high blood pressure due to emotional disturbances, cerebral hypertension, cardiovascular, and endocrinal hypertension due to abnormal functioning of pituitary and adrenal glands. [TRUNCATED
The discrepancy in G-band contrast: Where is the quiet Sun?
We compare the rms contrast in observed speckle reconstructed G-band images
with synthetic filtergrams computed from two magneto-hydrodynamic simulation
snapshots. The observations consist of 103 bursts of 80 frames each taken at
the Dunn Solar Telescope (DST), sampled at twice the diffraction limit of the
telescope. The speckle reconstructions account for the performance of the
Adaptive Optics (AO) system at the DST to supply reliable photometry. We find a
considerable discrepancy in the observed rms contrast of 14.1% for the best
reconstructed images, and the synthetic rms contrast of 21.5% in a simulation
snapshot thought to be representative of the quiet Sun. The areas of features
in the synthetic filtergrams that have positive or negative contrast beyond the
minimum and maximum values in the reconstructed images have spatial scales that
should be resolved. This leads us to conclude that there are fundamental
differences in the rms G-band contrast between observed and computed
filtergrams. On the basis of the substantially reduced granular contrast of
16.3% in the synthetic plage filtergram we speculate that the quiet-Sun may
contain more weak magnetic field than previously thought.Comment: 16 pages, 8 figure
Model selection for spectro-polarimetric inversions
Inferring magnetic and thermodynamic information from spectropolarimetric
observations relies on the assumption of a parameterized model atmosphere whose
parameters are tuned by comparison with observations. Often, the choice of the
underlying atmospheric model is based on subjective reasons. In other cases,
complex models are chosen based on objective reasons (for instance, the
necessity to explain asymmetries in the Stokes profiles) but it is not clear
what degree of complexity is needed. The lack of an objective way of comparing
models has, sometimes, led to opposing views of the solar magnetism because the
inferred physical scenarios are essentially different. We present the first
quantitative model comparison based on the computation of the Bayesian evidence
ratios for spectropolarimetric observations. Our results show that there is not
a single model appropriate for all profiles simultaneously. Data with moderate
signal-to-noise ratios favor models without gradients along the line-of-sight.
If the observations shows clear circular and linear polarization signals above
the noise level, models with gradients along the line are preferred. As a
general rule, observations with large signal-to-noise ratios favor more complex
models. We demonstrate that the evidence ratios correlate well with simple
proxies. Therefore, we propose to calculate these proxies when carrying out
standard least-squares inversions to allow for model comparison in the future.Comment: 16 pages, 2 figures, 8 tables, accepted for publication in Ap
A Synthetic Stellar Polarization Atlas from 400 to 1000 nm
% context heading (optional)
{With the development of new polarimeters for large telescopes, the
spectro-polarimetric study of astrophysical bodies is becoming feasible and,
indeed, more frequent. In particular, this is permitting the observational
study of stellar magnetic fields} % aims heading (mandatory) {With the aim to
optimize and interpret this kind of observations, we have produced a spectral
atlas of circular polarization in a grid of stellar atmospheric models with
effective temperatures between 3500 and 10000 K, surface gravities
, metallicities between 10 and 1, and magnetic field
strengths of 100, 1000 and 5000~G} % methods heading (mandatory) {We have
computed the emergent Stokes and flux spectra in LTE of more than
10 spectral lines} % results heading (mandatory) {The atlas and several
numerical tools are available in electronic format and may be downloaded from
http://download.hao.ucar.edu/pub/PSA/. In this paper we review and discuss some
of its most relevant features, such as which spectral regions and individual
lines harbor the strongest signals, what are interesting lines to observe, how
to disentangle field strength from filling factor, etc.}Comment: To appear in A&
HID-1 controls formation of large dense core vesicles by influencing cargo sorting and trans-Golgi network acidification
Large dense core vesicles (LDCVs) mediate the regulated release of neuropeptides and peptide hormones. They form at the trans-Golgi network (TGN), where their soluble content aggregates to form a dense core, but the mechanisms controlling biogenesis are still not completely understood. Recent studies have implicated the peripheral membrane protein HID-1 in neuropeptide sorting and insulin secretion. Using CRISPR/Cas9, we generated HID-1 KO rat neuroendocrine cells, and we show that the absence of HID-1 results in specific defects in peptide hormone and monoamine storage and regulated secretion. Loss of HID-1 causes a reduction in the number of LDCVs and affects their morphology and biochemical properties, due to impaired cargo sorting and dense core formation. HID-1 KO cells also exhibit defects in TGN acidification together with mislocalization of the Golgi-enriched vacuolar H+-ATPase subunit isoform a2. We propose that HID-1 influences early steps in LDCV formation by controlling dense core formation at the TGN.</jats:p
3D GPS velocity field and its implications on the present-day postorogenic deformation of the Western Alps and Pyrenees
We present a new 3D GPS velocity solution for 182 sites for the region encompassing the Western Alps, Pyrenees, and southern France. The velocity field is based on a Precise Point Positioning (PPP) solution, to which we apply a common-mode filter, defined by the 26 longest time series, in order to correct for network-wide biases (reference frame, unmodeled large scale processes, ¿). We show that processing parameters, such as troposphere delay modeling, can lead to systematic velocity variations of 0.1 - 0.5 mm/yr affecting both accuracy and precision, especially for short (< 5 yr) time series. A velocity convergence analysis shows that minimum time-series lengths of ~3 years and ~5.5 years are required to reach a velocity stability of 0.5 mm/yr in the horizontal and vertical components, respectively. On average, horizontal residual velocities show a stability of ~0.2 mm/yr in the Western Alps, Pyrenees, and southern France. The only significant horizontal strain rate signal is in the western Pyrenees with up to 4 x 10-9 yr-1 NNE-SSW extension, whereas no significant strain rates are detected in the Western Alps (< 1 x 10-9 yr-1). In contrast, we identify significant uplift rates up to 2 mm/yr in the Western Alps but not in the Pyrenees (0.1 ± 0.2 mm/yr). A correlation between site elevations and fast uplift rates in the northern part of the Western Alps, in the region of the Wurmian ice cap, suggests that part of this uplift is induced by postglacial rebound. The very slow uplift rates in the southern Western Alps and in the Pyrenees could be accounted for by erosion-induced rebound
The Zeeman effect in the G band
We investigate the possibility of measuring magnetic field strength in G-band
bright points through the analysis of Zeeman polarization in molecular CH
lines. To this end we solve the equations of polarized radiative transfer in
the G band through a standard plane-parallel model of the solar atmosphere with
an imposed magnetic field, and through a more realistic snapshot from a
simulation of solar magneto-convection. This region of the spectrum is crowded
with many atomic and molecular lines. Nevertheless, we find several instances
of isolated groups of CH lines that are predicted to produce a measurable
Stokes V signal in the presence of magnetic fields. In part this is possible
because the effective Land\'{e} factors of lines in the stronger main branch of
the CH A--X transition tend to zero rather quickly for
increasing total angular momentum , resulting in a Stokes spectrum of
the G band that is less crowded than the corresponding Stokes spectrum. We
indicate that, by contrast, the effective Land\'{e} factors of the and
satellite sub-branches of this transition tend to for increasing .
However, these lines are in general considerably weaker, and do not contribute
significantly to the polarization signal. In one wavelength location near 430.4
nm the overlap of several magnetically sensitive and non-sensitive CH lines is
predicted to result in a single-lobed Stokes profile, raising the
possibility of high spatial-resolution narrow-band polarimetric imaging. In the
magneto-convection snapshot we find circular polarization signals of the order
of 1% prompting us to conclude that measuring magnetic field strength in
small-scale elements through the Zeeman effect in CH lines is a realistic
prospect.Comment: 22 pages, 6 figures. To be published in the Astrophysical Journa
A near-IR line of Mn I as a diagnostic tool of the average magnetic energy in the solar photosphere
We report on spectropolarimetric observations of a near-IR line of Mn I
located at 15262.702 A whose intensity and polarization profiles are very
sensitive to the presence of hyperfine structure. A theoretical investigation
of the magnetic sensitivity of this line to the magnetic field uncovers several
interesting properties. The most important one is that the presence of strong
Paschen-Back perturbations due to the hyperfine structure produces an intensity
line profile whose shape changes according to the absolute value of the
magnetic field strength. A line ratio technique is developed from the intrinsic
variations of the line profile. This line ratio technique is applied to
spectropolarimetric observations of the quiet solar photosphere in order to
explore the probability distribution function of the magnetic field strength.
Particular attention is given to the quietest area of the observed field of
view, which was encircled by an enhanced network region. A detailed theoretical
investigation shows that the inferred distribution yields information on the
average magnetic field strength and the spatial scale at which the magnetic
field is organized. A first estimation gives ~250 G for the mean field strength
and a tentative value of ~0.45" for the spatial scale at which the observed
magnetic field is horizontally organized.Comment: 42 pages, 17 figures, accepted for publication in the Astrophysical
Journal. Figures 1 and 9 are in JPG forma
- âŠ