13 research outputs found

    Increased hemolysis rate in plasma tubes after implementation of a fully automated sample delivery and acceptance system

    Full text link
    Objectives: Automated sample delivery and laboratory acceptance systems (PTAS) may influence the hemolysis rate of blood samples due to g-forces, abrupt acceleration, and rapid deceleration. However, quantitative data regarding the rate of hemolysis in PTAS is limited. To fill this void, the effect of a pneumatic tube in combination with an acceptance system (PTAS) on the hemolysis rate was investigated in this study. Methods: Lithium heparin plasma tubes were transported from different clinical departments to the hospital’s laboratory (a) by employees or (b) with an automated PTAS and analyzed for the presence of hemolysis based on a hemolysis index (HI) of >25. Hemolysis indices of 68.513 samples were retrieved from the laboratory information system before and after installation of the PTAS and were subjected to statistical analysis. Results: A total of 32.614 samples were transported by employees, of which 3.815 samples (11.70%) were hemolytic, and 9.441 out of 35.899 samples delivered by PTAS (26.30%) were hemolytic. After the implementation of the PTAS, hemolysis rates increased in all departments. Conclusions: Automated PTAS are associated with increased hemolysis rates. This has implications for routine patient management and should be considered for the transportation of samples used for the determination of hemolysis-sensitive laboratory parameters

    High correlation of temporal muscle thickness with lumbar skeletal muscle cross-sectional area in patients with brain metastases.

    Get PDF
    OBJECTIVES: This study aimed to assess the correlation of temporal muscle thickness (TMT), measured on routine cranial magnetic resonance (MR) images, with lumbar skeletal muscles obtained on computed tomography (CT) images in brain metastasis patients to establish a new parameter estimating skeletal muscle mass on brain MR images. METHODS: We retrospectively analyzed the cross-sectional area (CSA) of skeletal muscles at the level of the third lumbar vertebra on computed tomography scans and correlated these values with TMT on MR images of the brain in two independent cohorts of 93 lung cancer and 61 melanoma patients (overall: 154 patients) with brain metastases. RESULTS: Pearson correlation revealed a strong association between mean TMT and CSA in lung cancer and melanoma patients with brain metastases (0.733; p<0.001). The two study cohorts did not differ significantly in patient characteristics, including age (p = 0.661), weight (p = 0.787), and height (p = 0.123). However, TMT and CSA measures differed significantly between male and female patients in both lung cancer and melanoma patients with brain metastases (p<0.001). CONCLUSION: Our data indicate that TMT, measured on routine cranial MR images, is a useful surrogate parameter for the estimation of skeletal muscle mass in patients with brain metastases. Thus, TMT may be useful for prognostic assessment, treatment considerations, and stratification or a selection factor for clinical trials in patients with brain metastases. Further studies are needed to assess the association between TMT and clinical frailty parameters, and the usefulness of TMT in patients with primary brain tumors

    Evaluation of the Temporal Muscle Thickness as an Independent Prognostic Biomarker in Patients with Primary Central Nervous System Lymphoma.

    Get PDF
    In this study, we assessed the prognostic relevance of temporal muscle thickness (TMT), likely reflecting patient's frailty, in patients with primary central nervous system lymphoma (PCNSL). In 128 newly diagnosed PCNSL patients TMT was analyzed on cranial magnetic resonance images. Predefined sex-specific TMT cutoff values were used to categorize the patient cohort. Survival analyses, using a log-rank test as well as Cox models adjusted for further prognostic parameters, were performed. The risk of death was significantly increased for PCNSL patients with reduced muscle thickness (hazard ratio of 3.189, 95% CI: 2-097-4.848, p < 0.001). Importantly, the results confirmed that TMT could be used as an independent prognostic marker upon multivariate Cox modeling (hazard ratio of 2.504, 95% CI: 1.608-3.911, p < 0.001) adjusting for sex, age at time of diagnosis, deep brain involvement of the PCNSL lesions, Eastern Cooperative Oncology Group (ECOG) performance status, and methotrexate-based chemotherapy. A TMT value below the sex-related cutoff value at the time of diagnosis is an independent adverse marker in patients with PCNSL. Thus, our results suggest the systematic inclusion of TMT in further translational and clinical studies designed to help validate its role as a prognostic biomarker

    Increased hemolysis rate in plasma tubes after implementation of a fully automated sample delivery and acceptance system

    No full text
    Automated sample delivery and laboratory acceptance systems (PTAS) may influence the hemolysis rate of blood samples due to g-forces, abrupt acceleration, and rapid deceleration. However, quantitative data regarding the rate of hemolysis in PTAS is limited. To fill this void, the effect of a pneumatic tube in combination with an acceptance system (PTAS) on the hemolysis rate was investigated in this study

    Silicon microcavity arrays with open access and a finesse of half a million

    No full text
    Optical resonators are increasingly important tools in science and technology. Their applications range from laser physics, atomic clocks, molecular spectroscopy, and single-photon generation to the detection, trapping and cooling of atoms or nano-scale objects. Many of these applications benefit from strong mode confinement and high optical quality factors, making small mirrors of high surface-quality desirable. Building such devices in silicon yields ultra-low absorption at telecom wavelengths and enables integration of micro-structures with mechanical, electrical and other functionalities. Here, we push optical resonator technology to new limits by fabricating lithographically aligned silicon mirrors with ultra-smooth surfaces, small and wellcontrolled radii of curvature, ultra-low loss and high reflectivity. We build large arrays of microcavities with finesse greater than F = 500,000 and a mode volume of 330 femtoliters at wavelengths near 1550 nm. Such high-quality micro-mirrors open up a new regime of optics and enable unprecedented explorations of strong coupling between light and matter

    High correlation of temporal muscle thickness with lumbar skeletal muscle cross-sectional area in patients with brain metastases.

    No full text
    ObjectivesThis study aimed to assess the correlation of temporal muscle thickness (TMT), measured on routine cranial magnetic resonance (MR) images, with lumbar skeletal muscles obtained on computed tomography (CT) images in brain metastasis patients to establish a new parameter estimating skeletal muscle mass on brain MR images.MethodsWe retrospectively analyzed the cross-sectional area (CSA) of skeletal muscles at the level of the third lumbar vertebra on computed tomography scans and correlated these values with TMT on MR images of the brain in two independent cohorts of 93 lung cancer and 61 melanoma patients (overall: 154 patients) with brain metastases.ResultsPearson correlation revealed a strong association between mean TMT and CSA in lung cancer and melanoma patients with brain metastases (0.733; pConclusionOur data indicate that TMT, measured on routine cranial MR images, is a useful surrogate parameter for the estimation of skeletal muscle mass in patients with brain metastases. Thus, TMT may be useful for prognostic assessment, treatment considerations, and stratification or a selection factor for clinical trials in patients with brain metastases. Further studies are needed to assess the association between TMT and clinical frailty parameters, and the usefulness of TMT in patients with primary brain tumors
    corecore